Skip to main content
Log in

Optimization of cationic dye removal using a high surface area-activated carbon from water treatment sludge

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A high surface area-activated carbon from water treatment sludge (WTS) was employed as adsorbent material to remove methylene blue (MB) dye from aqueous solutions. In this research, the effect of parameters of adsorbent dosage, time of contact, and pH on adsorption capacity and efficiency were determined. Global desirability methodology was applied by using central composite rotational statistical design in order to optimize the adsorption of dye solution of MB by washed activated sludge carbon (WASC). Activated carbons obtained from WTS were characterized by FTIR, TGA, XRD and BET techniques. The mesoporous material WASC showed a total pore volume of 0.439 cm3 g−1 and the largest specific surface area of 582.0 m2 g−1. The production of WASC indicates to be an excellent option in the sustainable use of WTS residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. UNESCO World Water Assessment Programme 2019 The united nations world water development report 2019: Leaving no one behind (Paris: UNESCO)

    Google Scholar 

  2. Department of economic and social affairs population dynamics. Available: https://population.un.org/wpp/DataQuery/. Accessed on 7 May 2020

  3. Burek P, Satoh Y, Fischer G, Kahil M T, Scherzer A, Tramberend S et al 2016 Water futures and solution: fast track initiative final report (Laxemburg: IIASA)

  4. Ahmad T, Ahmad K and Alam M 2016 J. Clean. Prod. 124 1

    Article  Google Scholar 

  5. Gomes S D C, Zhou J L, Li W and Long G 2019 Resour. Conserv. Recycl. 145 148

    Article  Google Scholar 

  6. Ahmad T, Ahmad K, Ahad A and Alam M 2016 J. Environ. Manag. 182 606

    Article  CAS  Google Scholar 

  7. Dassanayake K B, Jayasinghe G Y, Surapaneni A and Hetherington C 2015 Waste Manag. 38 321

    Article  CAS  Google Scholar 

  8. Hidalgo A M, Murcia M D, Gómez M, Gómez E, García-Izquierdo C and Solano C 2017 J. Environ. Eng. (US) 143 1

    Google Scholar 

  9. Gastaldini A L G, Hengen M F, Gastaldini M C C, Do Amaral F D, Antolini M B and Coletto T 2015 Constr. Build. Mater. 94 513

    Article  CAS  Google Scholar 

  10. Monteiro S N, Alexandre J, Margem J I, Sánchez R and Vieira C M F 2008 Constr. Build. Mater. 22 1281

    Article  Google Scholar 

  11. de Godoy L G G, Rohden A B, Garcez M R, da Costa E B, Da Dalt S and de Andrade J J O 2019 Constr. Build. Mater. 223 939

    Article  CAS  Google Scholar 

  12. Martínez-García C, Eliche-Quesada D, Pérez-Villarejo L, Iglesias-Godino F J and Corpas-Iglesias F A 2012 J. Environ. Manag. 95 S343

    Article  Google Scholar 

  13. Ooi T Y, Yong E L, Din M F M, Rezania S, Aminudin E, Chelliapan S et al 2018 J. Environ. Manag. 228 13

    Article  CAS  Google Scholar 

  14. Devi P and Saroha A K 2017 Sci. Total Environ. 578 16

    Article  CAS  Google Scholar 

  15. Siswoyo E, Qoniah I, Lestari P, Fajri J A, Sani R A, Sari D G et al 2019 Environ. Technol. Innov. 14 100312

    Article  Google Scholar 

  16. Zhang W, Mao S, Chen H, Huang L and Qiu R 2013 Bioresour. Technol. 147 545

    Article  CAS  Google Scholar 

  17. Shalaby N H, Ewais E M M, Elsaadany R M and Ahmed A 2017 Egypt J. Pet. 26 661

    Article  Google Scholar 

  18. Wang X, Zhu N and Yin B 2008 J. Hazard. Mater. 153 22

    Article  CAS  Google Scholar 

  19. Souza P R, Dotto G L and Salau N P G 2019 J. Environ. Chem. Eng. 7 102891

    Article  CAS  Google Scholar 

  20. Asuha S, Fei F, Wurendaodi W, Zhao S, Wu H and Zhuang X 2019 Powder Technol. 261 118214

    Google Scholar 

  21. Moradi S E 2014 J. Ind. Eng. Chem. 20 208

    Article  CAS  Google Scholar 

  22. Aichour A and Zaghouane-Boudiaf H 2019 Int. J. Biol. Macromol. 154 1227

    Article  Google Scholar 

  23. Gürses A, Hassani A, Kıranşan M, Açışlı Ö and Karaca S 2014 J. Water Process Eng. 2 10

    Article  Google Scholar 

  24. Varghese S P, Babu A T, Babu B and Antony R 2017 J. Water Process Eng. 19 1

    Article  Google Scholar 

  25. Momina M S and Suzylawati I 2020 J. Water Process Eng. 34 101155

  26. Wawrzkiewicz M, Wiśniewska M, Wołowicz A, Gun’ko V M and Zarko V I 2017 Microporous Mesoporous Mater. 250 128

  27. Hasanzadeh V, Rahmanian O and Heidari M 2020 Microchem. J. 152 104261

    Article  CAS  Google Scholar 

  28. Gonçalves J O, da Silva K A, Rios E C, Crispim M M, Dotto G L and Almeida Pinto L A 2019 Chem. Eng. Technol. 42 454

    Article  Google Scholar 

  29. Yang F, Zhang Q, Jian H, Wang C, Xing B, Sun H et al 2020 J. Hazard. Mater. 396 122598

    Article  CAS  Google Scholar 

  30. Yoldi M, Fuentes-Ordoñez E G, Korili S A and Gil A 2019 Microporous Mesoporous Mater. 287 183

    Article  CAS  Google Scholar 

  31. Li X, Wang Z, Ning J, Gao M, Jiang W, Zhou Z et al 2018 J. Environ. Manag. 217 305

    Article  CAS  Google Scholar 

  32. Al-Zahrani A A, Al-Shahiani S S and Al-Tawil Y A 2001 J. King Saud Univ. Eng. Sci. 13 193

  33. Association of Official Analytical Chemists 1995 Official methods of analysis of AOAC International (Madison: The association)

    Google Scholar 

  34. Streit A F M, Côrtes L N, Druzian S P, Godinho M, Collazzo G C, Perondi D et al 2019 Sci. Total Environ. 660 277

    Article  CAS  Google Scholar 

  35. Puchana-Rosero M J, Adebayo M A, Lima E C, Machado F M, Thue P S, Vaghetti J C P et al 2016 Colloids Surfaces A Physicochem. Eng. Asp. 504 105

    Article  CAS  Google Scholar 

  36. Archin S, Sharifi S H and Asadpour G 2019 J. Clean. Prod. 239 118136

    Article  CAS  Google Scholar 

  37. Zaini M A A, Zakaria M, Mohd.-Setapar S H and Che-Yunus M A 2013 J. Environ. Chem. Eng. 1 1091

  38. Rozada F, Otero M, García A I and Morán A 2007 Dye Pigment. 72 47

    Article  Google Scholar 

  39. Dassanayake K B, Jayasinghe G Y, Surapaneni A and Hetherington C 2015 Waste Manag. 38 321

    Article  CAS  Google Scholar 

  40. Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J et al 2015 Pure Appl. Chem. 87 1051

    Article  CAS  Google Scholar 

  41. de Macedo J S, da Costa Júnior N B, Almeida L E, da Vieira E F S, Cestari A R, de Gimenez I F et al 2006 J. Colloid Interface Sci. 298 515

  42. dos Santos D C, Adebayo M A, de Fátima Pinheiro Pereira S, Prola L D T, Cataluña R, Lima E C et al 2014 Korean J. Chem. Eng. 31 1470

  43. Saucier C, Adebayo M A, Lima E C, Cataluña R, Thue P S, Prola L D T et al 2015 J. Hazard. Mater. 289 18

    Article  CAS  Google Scholar 

  44. Ribas M C, Adebayo M A, Prola L D T, Lima E C, Cataluña R, Feris L A et al 2014 Chem. Eng. J. 248 315

    Article  CAS  Google Scholar 

  45. Calvete T, Lima E C, Cardoso N F, Vaghetti J C P, Dias S L P and Pavan F A 2010 J. Environ. Manag. 91 1695

    Article  CAS  Google Scholar 

  46. Calvete T, Lima E C, Cardoso N F, Dias S L P and Ribeiro E S 2010 Clean Soil Air Water 38 521

    Article  CAS  Google Scholar 

  47. Silva L G, Ruggiero R, de Gontijo P M, Pinto R B, Royer B, Lima E C et al 2011 Chem. Eng. J. 168 620

  48. Bishnoi A, Kumar S and Joshi N 2017 in Microscopy methods in nanomaterials characterization S Thomas, R Thomas, A K Zachariah and R K Mishra (eds) (Kerala: Elsevier) p 313

  49. Prola L D T, Acayanka E, Lima E C, Umpierres C S, Vaghetti J C P, Santos W O et al 2013 Ind. Crops Prod. 46 328

    Article  CAS  Google Scholar 

  50. Ramalingam B, Khan M M R, Mondal B, Mandal A B and Sujoy K 2015 ACS Sustain. Chem. Eng. 3 2291

    Article  CAS  Google Scholar 

  51. Rosa G S, Vanga S K, Gariepy Y and Raghavan V 2019 Innov. Food Sci. Emerg. Technol. 58 102234

    Article  Google Scholar 

  52. Hu L, Guang C, Liu Y, Su Z, Gong S, Yao Y et al 2020 Chemosphere 246 125757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Silveira da Rosa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, A.V., Kulman, R.X., Janner, N.N. et al. Optimization of cationic dye removal using a high surface area-activated carbon from water treatment sludge. Bull Mater Sci 44, 41 (2021). https://doi.org/10.1007/s12034-020-02333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02333-x

Keywords

Navigation