Skip to main content
Log in

Green synthesis of graphene quantum dots and the dual application of graphene quantum dots-decorated flexible MSM p-type ZnO device as UV photodetector and piezotronic generator

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A novel method to synthesize graphene sheets and graphene quantum dots (GQDs) from agricultural waste is reported in this paper. The as-prepared GQDs were decorated on the antimony (Sb)-doped zinc oxide (ZnO) nanostructures to improve the opto-electrical properties of the photodetector. Morphological studies, elemental analysis, absorption and Raman spectroscopy studies were performed on the as-prepared graphene sheets and GQDs. A GQDs-decorated, p-type Sb-doped ZnO metal–semiconductor–metal (MSM) interdigitated UV photodetector was fabricated on a flexible ITO/PET substrate. Structural, morphological and elemental analyses were performed on the GQDs-decorated nanostructures. The Hall measurements show that the device exhibits p-type conductivity with hole concentration of 3 × 1019 cm−3 and Hall mobility of 2067 cm2 V−1 s−1. It is observed from the IV studies that the Sb-doped ZnO MSM device with GQDs exhibits 103 times higher dark and photocurrents as compared to the device without GQDs decoration. The dynamic response is measured, and the turn-on (τon) and turn-off (τoff) times are found to be 3.67 and 12.26 s, respectively. The device also exhibited piezotronic dark potential on compression at a convex arc angle. Repeated compressions and relaxations were performed on the device and it behaved as a piezotronic generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Koole R, Groeneveld E and Vanmaekelbergh D 2014 Nanoparticles, https://doi.org/10.1007/978-3-662-44823-6

  2. Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109

    Article  Google Scholar 

  3. Shen J, Zhu Y, Yang X, Zong J, Zhang J and Li C 2012 New J. Chem. 36 97

    Article  CAS  Google Scholar 

  4. Lee J, Kim K, Park W I, Kim B-H, Park J H, Kim T-H et al 2012 Nano Lett. 12 6078

    Article  CAS  Google Scholar 

  5. Elvati P, Baumeister E and Violi A 2017 RSC Adv. 7 17704

    Article  CAS  Google Scholar 

  6. Xie Y, Wei L, Wei G, Li Q, Wang D, Chen Y et al 2013 Nanoscale Res. Lett. 8 1

    Article  Google Scholar 

  7. Fathima N, Pradeep N and Balakrishnan J 2019 Mater. Sci. Semicond. Process. 90 26

    Article  CAS  Google Scholar 

  8. Kao T-H, Chen J-Y, Chiu C-H, Huang C-W and Wu W-W 2014 Appl. Phys. Lett. 104 111909.

    Article  Google Scholar 

  9. Liu K, Sakurai M and Aono M 2010 Sensors 10 8604

    Article  CAS  Google Scholar 

  10. Yao J, Zheng Z and Yang G 2016 ACS Appl. Mater. Interfaces 8 12915

    Article  CAS  Google Scholar 

  11. Somanathan T, Prasad K and Ostrikov K K 2015 Nanomaterials 5 826

    Article  CAS  Google Scholar 

  12. Paola R, Hu A, Compagnini G, Duley W W and Zhou N Y 2014 Nanoscale 6 2381

    Article  Google Scholar 

  13. Song L, Shi J, Lua J and Lu C 2015 Chem. Sci. 6 4846

    Article  CAS  Google Scholar 

  14. Çiplak Z, Yildiz N and Çalimli A 2015 Fuller. Nanotub. Car. N. 23 361

    Article  Google Scholar 

  15. Wazir A H and Kundi I W 2016 J. Chem. Soc. Pak. 38 11

    CAS  Google Scholar 

  16. Lai Q, Zhu S, Luo X, Zou M and Huang S 2012 AIP Adv. 2 2

    Google Scholar 

  17. Mohajer S, Ara M H M and Serahatjoo L 2016 J. Nanophotonics 10 036014

    Article  Google Scholar 

  18. Chhabra V A, Kaur R, Kumar N, Deep A, Rajesh C and Kim K-H 2018 RSC Adv. 8 11446

    Article  CAS  Google Scholar 

  19. Hodkiewicz J 2010 Thermo Fisher Scientific 4 1

    Google Scholar 

  20. Wu J, Wang P, Wang F and Fang Y 2018 Nanomaterials 8 864

    Article  Google Scholar 

  21. Dong X, Shi Y, Zhao Y, Chen D, Ye J, Yao Y et al 2009 Phys. Rev. Lett. 102 135501

    Article  Google Scholar 

  22. Kim D, Kim W, Jeon S and Yong K 2017 RSC Adv. 7 40539

    Article  CAS  Google Scholar 

  23. Sahoo S, Khurana G, Barik S K, Dussan S, Barrionuevo D and Katiyar R S 2013 J. Phys. Chem. C 117 5485

    Article  CAS  Google Scholar 

  24. David T, Goldsmith S and Boxman R L 2005 cond-mat. mtrl-sci. 1, http://arxiv.org/abs/cond-mat/0502150

  25. Yang B, Chen J, Cui L and Liu W 2015 RSC Adv. 5 59204

    Article  CAS  Google Scholar 

  26. Chen W J, Wu J-K, Lin J-C, Lo S-T, Lin H-D, Hang D-R et al 2013 Nanoscale Res. Lett. 8 1

    Article  CAS  Google Scholar 

  27. Boruah B D and Misra A 2016 ACS Appl. Mater. Interfaces 8 18182

    Article  Google Scholar 

  28. Chang Y 2010 Dissertation School of Materials Science and Engineering, Georgia Institute of Technology

  29. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y et al 2011 Adv. Mater. 23 776

    Article  Google Scholar 

  30. Müller A, Konstantinidis G, Dragoman M, Neculoiu D, Dinescu A, Androulidaki M et al 2008 Proc. Int. Semicond. Conf. CAS 1 91

    Google Scholar 

  31. Fathima N, Pradeep N and Balakrishnan J 2019 Sol. Energy Mater. Sol. Cells 194 207

    Article  CAS  Google Scholar 

  32. Rajan A, Kumar H, Gupta V and Tomar M 2014 Procedia Eng. 94 44

    Article  CAS  Google Scholar 

  33. Kiruthika S, Singh S and Kulkarni G U 2016 RSC Adv. 6 44668

    Article  CAS  Google Scholar 

  34. Liu D, Li H-J, Gao J, Zhao S, Zhu Y, Wang P et al 2018 Nanoscale Res. Lett. 13 261

    Article  Google Scholar 

  35. Zhang Q, Jie J, Diao S, Shao Z and Zhang Q 2015 ACS Nano 9 1561

    Article  CAS  Google Scholar 

  36. Tetsuka H 2017 Sci. Rep. 7 1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our gratitude towards the INUP program offered by the Department of CeNSe, Indian Institute of Science (IISc), Bangalore, for providing the characterization facilities (SEM and XRD) required to complete this study. We would also like to thank the research center and Department of Nanoscience and Technology of Mount Carmel College, Bangalore, for providing us with lab facilities for the synthesis and fabrication of the device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazia Fathima.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathima, N., Pradeep, N. & Balakrishnan, J. Green synthesis of graphene quantum dots and the dual application of graphene quantum dots-decorated flexible MSM p-type ZnO device as UV photodetector and piezotronic generator. Bull Mater Sci 44, 33 (2021). https://doi.org/10.1007/s12034-020-02326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02326-w

Keywords

Navigation