Skip to main content
Log in

Photocatalytic degradation of textile dyeing wastewater under visible light irradiation using green synthesized mesoporous non-metal-doped TiO2

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Because of simplicity, eco-friendly and attracting of scientific community, pure and non-metal-doped TiO2 nanoparticles (NPs) photocatalysts: TiO2 (T), C-TiO2 (CT), N-TiO2 (NT), S-TiO2 (ST) and C, N, S-TiO2 (CNST) were prepared by aqueous mangrove extract via sol–gel method. The materials were characterized by XRD, FTIR, UV–Vis absorption spectroscopy, BET, SEM, TEM, EDX, XPS, EIS and PEC. The results indicated that the planned photocatalysts exhibit an anatase crystal phase with a particle size in the range of 20–37 nm. The non-metal doping induces a redshift of optical absorption edge, and exhibits a strong visible light absorption. The photoluminescence intensity emission follows the order: T > CT > ST > NT > CNST, whereas the photocatalytic activity (PCA) increases in the reverse order. The PCA was assessed by photodegradation of two organic dyes, reactive blue 19 (B19) and red 76 (R76) under visible light illumination. The enhancement in visible PCA followed the order CNST > NT > ST > CT > T. The photocatalytic degradation efficiency of the dyes using the CNST sample reached 100% after 60 min of irradiation. The most active species in the photocatalytic processes are the positive holes. The solid photocatalysts were recycled five times without losing its activity. The chemical oxygen demand test confirmed that the CNST is the best photocatalyst of the investigated samples. Overall, the greenly synthesized NPs demonstrated the outstanding potential of green product for treating contaminated water by both B19 and R76 dyes under visible light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Fang Bai Li A B, Li X Z and Cheah K W 2005 Environ. Chem. 2 130

    Article  Google Scholar 

  2. Patra A K, Kundu S K, Bhaumik A and Dukjoon Kim D 2016 Nanoscale 8 365

    Article  CAS  Google Scholar 

  3. Bera R, Kundu S and Patra A 2015 ACS Appl. Mater. Interfaces 7 13251

  4. Lavand A B and Malghe Y S 2015 Adv. Mater. Lett. 6 695

    Article  CAS  Google Scholar 

  5. Gomes J, Lincho J, Domingues E, Quinta-Ferreira R M and Martins R C 2019 Water 11 373

    Article  CAS  Google Scholar 

  6. Ge J, Zhang Y, Heo Y and Park S 2019 Catalysts 9 122

    Article  Google Scholar 

  7. Nasr M, Eid C, Habchi R, Miele P and Bechelany M 2018 ChemSusChem 11 3023

    Article  CAS  Google Scholar 

  8. Ma Y, Wang X, Jia Y, Chen X, Han H and Li C 2014 Chem. Rev. 114 9987

    Article  CAS  Google Scholar 

  9. Wang C, Zeng T, Zhu S and Gu C 2019 Appl. Sci. 9 339

    Article  Google Scholar 

  10. Valentin C D and Pacchioni G 2013 Catal. Today 206 12

    Article  Google Scholar 

  11. Maletić M, Vukčević M, Kalijadis A, Janković-Častvan I, Dapčevic A, Laušević Z et al 2019 Arab. J. Chem. 12 4388

    Article  Google Scholar 

  12. Challagulla S and Roy S 2017 J. Mater. Res. 32 2764

    Article  CAS  Google Scholar 

  13. Mutuma B K, Shao G N, Kim W D and Kim H T 2015 J. Colloid Interface Sci. 442 1

    Article  CAS  Google Scholar 

  14. Ramakrishnan V, Natarajan M, Santhanam A, Asokan V and Velauthapillai D 2018 Mater. Res. Bull. 97 351

    Article  CAS  Google Scholar 

  15. Ashok C H, Rao K V, Chakra C H and Rajendar V 2015 Int. J. Multidiscip. Adv. Res. Trends 2 241

    Google Scholar 

  16. Lusvardi G, Barani C, Giubertoni F and Paganelli G 2017 Materials 10 1208

    Article  Google Scholar 

  17. Gautam G, Saxena G, Singh V, Yadav A, Bhargava R and Thapa K 2018 Chem. Eng. J. 336 386

    Article  Google Scholar 

  18. Dara S S 1999 A textbook on experiments and calculations in engineering chemistry (New Delhi: S. Chand Publication)

    Google Scholar 

  19. Klug H and Alexander L 1974 X–ray diffraction procedure for polycrystallite and amorphous materials 2nd edn (New York: John Wiley and Sons)

    Google Scholar 

  20. Bezrodna T, Puchkovska G, Shymanovska V, Baran J and Ratajczak H 2004 J. Mol. Struct. 700 175

    Article  CAS  Google Scholar 

  21. Rahimi R, Moghaddam S S and Rabbani M 2012 J. Sol–Gel Sci. Technol. 64 17

    Article  CAS  Google Scholar 

  22. Hua Xu J, Dai W, Li J, Cao Y, Li H, He H et al 2008 Catal. Commun. 9 146

    Article  Google Scholar 

  23. Shi Y and Zuo J 2011 Adv. Mater. Res. 183 1842

    Google Scholar 

  24. Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y et al 2013 J. Solid State Electrochem. 17 2959

    Article  CAS  Google Scholar 

  25. Bezerra P, Cavalcante R, Garcia A, Wender H, Martines A, Casagrande G et al 2017 J. Braz. Chem. Soc. 28 1788

    CAS  Google Scholar 

  26. Tauc J 1974 Amorphous and liquid semiconductors (London: Plenum)

    Book  Google Scholar 

  27. Meng Ni, Leung K, Dennis Y and Sumathy K 2007 Renew Sustain. Energy Rev. 11 401

    CAS  Google Scholar 

  28. Peng F, Cai L, Yu H, Wang H and Yang J 2008 J. Solid State Chem. 181 130

    Article  CAS  Google Scholar 

  29. Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G et al 2018 Catal. Today 300 12

    Article  CAS  Google Scholar 

  30. Fang M, Chen Z X, Wang S Z and Lu H B 2012 Nanotechnology 23 1262

    Google Scholar 

  31. Xu J H, Li J, Dai W, Cao Y, Li H and Fan K 2008 Appl. Catal. B: Environ79 72

    Article  CAS  Google Scholar 

  32. Zong H, Zhao T, Zhou G, Qian R, Feng T and Pan J 2019 Catal. Today 335 252

    Article  CAS  Google Scholar 

  33. Reddy P, Reddy P, Sharma V, Srinivas B, Kumari V and Subrahmanyam M 2010 J. Water Resour. Prot. 2 235

    Article  CAS  Google Scholar 

  34. Liu S and Chen X 2007 J. Hazard. Mater. 152 48

    Article  Google Scholar 

  35. Baram N and Ein-Eli Y 2010 J. Phys. Chem. C 114 9781

    Article  CAS  Google Scholar 

  36. Kang X, Liu S, Dai Z, He Y and Song X 2019 Catalysts 9 191

    Article  Google Scholar 

  37. Zhou M and Yu Y 2008 J. Hazard. Mater. 152 1229

    Article  CAS  Google Scholar 

  38. Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J et al 2012 J. Phys. Chem. C 116 5764

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAHMOUD MOUSA.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 6849 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HELMY, E.T., NEMR, A.E., ARAFA, E. et al. Photocatalytic degradation of textile dyeing wastewater under visible light irradiation using green synthesized mesoporous non-metal-doped TiO2. Bull Mater Sci 44, 30 (2021). https://doi.org/10.1007/s12034-020-02322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02322-0

Keywords

Navigation