Skip to main content
Log in

Physical properties of microspheres prepared by blending poly(lactide-co-glycolide) and poly lactide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, ~2.0-μm microspheres of blended poly(lactide-co-glycolide) (PLGA) and poly lactide (PLA), both are biodegradable and biocompatible, were prepared either through a preparation technique for particles using a microhomogenizer or membrane emulsification technique. To understand the potential of the drug delivery system (DDS) formulation, fundamental physical properties, degradation and drug release studies on microspheres prepared using two particle preparation techniques were analysed. The PLGA/PLA particles prepared using the microhomogenizer were polydisperse or irregular-shaped, but the particles prepared using the membrane emulsification technique were very monodisperse and spherical. Increasing the PLA fraction in PLGA/PLA microspheres allowed control over the degradation of the prepared particles. Furthermore, such microspheres could also be used for the controlled drug release behaviour of particles. The particles prepared using the membrane emulsification technique exhibited better controlled drug releasing behaviour than those prepared using the microhomogenizer. From the above, this study revealed that PLGA/PLA microspheres prepared using the membrane emulsification method were advantageous for the study of DDS formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Betty Tyler, David Gullotti, Antonella Mangraviti, Tadanobu Utsuki and Henry Brem 2016 Adv. Drug Deliv. Rev. 107 163

    Article  CAS  Google Scholar 

  2. Ganesh Narayanan, Varadraj N Vernekar, Emmanuel L Kuyinu and Cato T Laurencin 2016 Adv. Drug Deliv. Rev. 107 247

    Article  CAS  Google Scholar 

  3. Dingying Shan, Ethan Gerhard, Chenji Zhang, John William Tierney, Daniel Xie, Zhiwen Liu et al 2018 Bioact. Mater. 3 434

    Article  Google Scholar 

  4. Huailan Wang, Wenjia Sun, Dongliang Fu, Yueliang Shen, Ying-ying Chen and Lin-Lin Wang 2018 J. Orthop. Translat. 13 41

    Article  CAS  Google Scholar 

  5. Ranjeet A Bapat, Chaitanya P Joshi, Prachi Bapat, Tanay V Chaubal, Rohit Pandurangappa, Naveen Jnanendrappa et al 2019 Drug Discov. Today 24 85

    Article  CAS  Google Scholar 

  6. James M Anderson and Matthew S Shive 1997 Adv. Drug Deliv. Rev. 28 5

    Article  CAS  Google Scholar 

  7. Patrick B O’Donnell and James W McGinity 1997 Adv. Drug Deliv. Rev. 28 25

    Article  Google Scholar 

  8. Rajeev A Jain 2000 Biomaterials 21 2475

  9. Maria Mir, Naveed Ahmed and Asim Ur Rehman 2017 Colloids Surf. B 159 217

    Article  CAS  Google Scholar 

  10. Yasuaki Ogawa, Masaki Yamamoto, Hiroaki Okada, Takatsuka Yashiki and Tsugio Shimamoto 1988 Chem. Pharm. Bull. 36 1095

    Article  CAS  Google Scholar 

  11. Yasuaki Ogawa, Masaki Yamamoto, Shigeyuki Takada, Hiroaki Okada and Tsugio Shimamoto 1988 Chem. Pharm. Bull. 36 1502

    Article  CAS  Google Scholar 

  12. Hiroyuki Tsujimoto, Kaori Hara, Yusuke Tsukada, Huang C C, Yoshiaki Kawashima, Minoru Arakaki et al 2007 Bioorg. Med. Chem. Lett. 17 4771

    Article  CAS  Google Scholar 

  13. Fengjuan Li, Aiping Zhu, Xiaoli Song, Lijun Ji and Juan Wang 2013 Int. J. Pharm. 453 506

    Article  CAS  Google Scholar 

  14. Yunxia Jiang, Fang Wang, Hui Xu, Hui Liu, Qingguo Meng and Wanhui Liu 2014 Int. J. Pharm. 475 475

    Article  CAS  Google Scholar 

  15. Junya Liang, Bowen Yang and Jianping Deng 2018 Chem. Eng. J. 344 262

    Article  CAS  Google Scholar 

  16. María F Loya-Castro, Mariana Sánchez-Mejía, Dante R Sánchez-Ramírez, Rossina Domínguez-Ríos, Noé Escareño, Paola E Oceguera-Basurto et al 2018 J. Colloid Interface Sci. 518 122

  17. Stefania Boi, Elena Dellacasa, Paolo Bianchini, Paola Petrini, Laura Pastorino and Orietta Monticelli 2019 Colloids Surf. B 179 190

    Article  CAS  Google Scholar 

  18. Juan David Ospina-Villa, Catalina Gómez-Hoyos, Robin Zuluaga-Gallego and Omar Triana-Chávez 2019 J. Microbiol. Methods 162 1

  19. Fuminori Ito and Kimiko Makino 2004 Colloids Surf. B 39 17

    Article  Google Scholar 

  20. Fuminori Ito, Hiroyuki Fujimori, Hiroyuki Honnami, Hiroyoshi Kawakami, Kiyoshi Kanamura and Kimiko Makino 2008 Colloids Surf. B 66 65

    Article  CAS  Google Scholar 

  21. Fuminori Ito, Hiroyuki Honnami, Hiroyoshi Kawakami, Kiyoshi Kanamura and Kimiko Makino 2008 Colloids Surf. B 67 20

    Article  CAS  Google Scholar 

  22. Fuminori Ito, Hiroyuki Fujimori, Hiroyuki Honnami, Hiroyoshi Kawakami, Kiyoshi Kanamura and Kimiko Makino 2009 Eur. Polym. J. 45 658

    Article  CAS  Google Scholar 

  23. Fuminori Ito, Hiroyuki Fujimori, Hiroyuki Honnami, Hiroyoshi Kawakami, Kiyoshi Kanamura and Kimiko Makino 2010 J. Mater. Sci.: Mater. Med. 21 1563

    CAS  Google Scholar 

  24. Fuminori Ito, Yusuke Uchida and Yoshihiko Murakami 2010 Colloids Surf. A 361 109

    Article  CAS  Google Scholar 

  25. Fuminori Ito, Yurie Kanakubo and Yoshihiko Murakami 2011 J. Polym. Res. 18 2077

    Article  CAS  Google Scholar 

  26. Fuminori Ito and Hiroyoshi Kawakami 2015 Colloids Surf. A 482 734

    Article  Google Scholar 

  27. Fuminori Ito 2016 J. Nano Res. 18 262

    Article  Google Scholar 

  28. Nandini Bhandaru 2020 Bull. Mater. Sci. 43 180

    Article  CAS  Google Scholar 

  29. Meneka Banik and Rabibrata Mukherjee 2018 ACS Omega 3 13422

    Article  Google Scholar 

  30. Meneka Banik, Nandini Bhandaru and Rabibrata Mukherjee 2018 Chem. Commun. 54 3484

    Article  CAS  Google Scholar 

  31. Fuminori Ito, Yuriko Nishiyama, Shuhong Duan and Hidetaka Yamada 2020 Macromol. Res. 28 365

    Article  CAS  Google Scholar 

  32. Hafiz Abdul Mannan, Hilmi Mukhtar, Murugesan Thanabalan, Rizwan Nasir, Dzeti Farhah Mohshim and Asim Mushtaq 2013 Chem. Eng. Technol. 36 1838

    Article  CAS  Google Scholar 

  33. Liyuan Deng, Taek-Joong Kim and May-Britt Hägg 2009 J. Membr. Sci. 340 154

    Article  CAS  Google Scholar 

  34. Shinzo Omi, Tatsuo Senba, Masatoshi Nagai and Guang-Hui Ma 2001 J. Appl. Polym. Sci. 79 2200

    Article  CAS  Google Scholar 

  35. Farshad Ramazani, Weiluan Chen, Cornelis F van Nostrum, Gert Storm, Fabian Kiessling, Twan Lammers et al 2016 Int. J. Pharm. 499 358

    Article  CAS  Google Scholar 

  36. Nikolaus Kofler, Christiane Ruedl, Jörg Klima, Heidrun Recheis, Günther Böck, Georg Wick et al 1996 J. Immunol. Methods 192 25

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant 19K05191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F ITO.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ITO, F., YAMADA, H. Physical properties of microspheres prepared by blending poly(lactide-co-glycolide) and poly lactide. Bull Mater Sci 44, 20 (2021). https://doi.org/10.1007/s12034-020-02310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02310-4

Keywords

Navigation