Skip to main content
Log in

First-principle study of structural, electronic, thermoelectric and vibrational properties of Co2-based Weyl semimetal VCo2Al

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The class of semimetals has emerged as upcoming future devices due to their technological efficient applications. The distinctive component in semimetals is the simultaneous manipulation of spin states along with electronic states that has prompted the discovery of spin ordering at Fermi level. The current investigation is first-principle approach to compute structural, electronic, thermoelectric and vibrational properties of VCo2Al. The systematic and detailed theoretical investigation based on density functional theory in combination with Boltzmann transport theory has been done for the first time. The structural properties namely lattice constant, bulk modulus and pressure derivative of bulk modulus have been calculated, revealing that VCo2Al gets stiffer on applying pressure. The plotted electronic band structure shows band dispersion at two discrete points at Fermi level specifying VCo2Al to be Weyl semimetal. The joint analysis of electronic band structure and plotted density of states affirms the band dispersion and presence of Weyl electrons at Fermi level. The present investigation purposes VCo2Al as an excellent n-type high temperature thermoelectric material having power factor of 184.3 × 1014 µW cm−1 K−2 s−1 at 800 K. The vibrational properties calculated within the framework of density functional perturbation theory uncover the dynamic stability of VCo2Al. The computed physical properties from these calculations would create new frontiers of experimental work for further realization of innovative applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zuber K 1998 Phys. Rep. 305 295

    Article  CAS  Google Scholar 

  2. Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. 5 011029

    Article  Google Scholar 

  3. Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C et al 2015 Science 349 613

    Article  CAS  Google Scholar 

  4. Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J et al 2015 Phys. Rev. 5 031013

    Article  Google Scholar 

  5. Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T et al 2015 Nat. Phys. 11 728

    Article  CAS  Google Scholar 

  6. Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C et al 2015 Sci. Adv. 1 e1501092

    Article  Google Scholar 

  7. Souma S, Wang Z, Kotaka H, Sato T, Nakayama K, Tanaka Y et al 2016 Phys. Rev B 93 161112

    Article  Google Scholar 

  8. Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F et al 2016 Nat. Mater. 15 27

    Article  CAS  Google Scholar 

  9. Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D et al 2015 Science 349 622

    Article  CAS  Google Scholar 

  10. Yan B and Felser C 2017 Ann. Rev. Condens. Matter Phys. 8 337

    Article  Google Scholar 

  11. Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G et al 2016 Sci. Rep. 6 1

    Article  CAS  Google Scholar 

  12. Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B et al 2017 Phys. Rev. Lett. 119 156401

    Article  Google Scholar 

  13. Belopolski I, Manna K, Sanchez D S, Chang G, Ernst B, Yin J et al 2019 Science 365 1278

    Article  CAS  Google Scholar 

  14. Markou A, Kriegner D, Gayles J, Zhang L, Chen Y C, Ernst B et al 2019 Phys. Rev. B 100 054422

    Article  CAS  Google Scholar 

  15. Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z et al 2015 Phys. Rev. 5 031023

    Article  Google Scholar 

  16. Meng H, Cao H, Wang W, Chen L and Fan Y 2016 Sci. China-Phys. Mech. Astron. 59 100311 (Erratum 2017 Sci. China-Phys. Mech. Astron. 60 010351)

  17. Yang X, Liu Y, Wang Z, Zheng Y and Xu Z A 2015 preprint arXiv:1506.03190

  18. Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M et al 2014 Nature 514 205

    Article  CAS  Google Scholar 

  19. Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I et al 2015 Nat. Phys. 11 645

    Article  CAS  Google Scholar 

  20. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al 2009 J. Phys. Condens. Matter 21 395502

  21. Villars P, Cenzual K and Gladyshevskii R 2014 Handbook (Berlin, Germany: Walter de Gruyter GmbH & Co KG)

    Google Scholar 

  22. Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048

    Article  CAS  Google Scholar 

  23. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  24. Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67

    Article  CAS  Google Scholar 

  25. Ghosh S 2009 Intermetallics 17 708

    Article  CAS  Google Scholar 

  26. Kokalj A 1999 J. Mol. Graph. Model. 17 176

    Article  CAS  Google Scholar 

  27. Birch F 1947 Phys. Rev. 71 809

    Article  CAS  Google Scholar 

  28. Angel R J, Alvaro M and Gonzalez-Platas J 2014 Z. Kristallogr. Cryst. Mater. 229 405

    Article  CAS  Google Scholar 

  29. Li J, Yang G, Yang Y, Ma H, Zhang Q, Zhang Z et al 2017 J. Magn. Magn. Mater. 442 371

    Article  CAS  Google Scholar 

  30. Lou Z, Li F, Deng J, Wang L and Zhang T 2013 ACS Appl. Mater. Interfaces 5 12310

    Article  CAS  Google Scholar 

  31. Jansen H J F and Freeman A J 1984 Phys. Rev. B 30 561

    Article  CAS  Google Scholar 

  32. Armitage N P, Mele E J and Vishwanath A 2018 Rev. Modern Phys. 90 015001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tavneet Kaur.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Sinha, M.M. First-principle study of structural, electronic, thermoelectric and vibrational properties of Co2-based Weyl semimetal VCo2Al. Bull Mater Sci 44, 27 (2021). https://doi.org/10.1007/s12034-020-02305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02305-1

Keywords

Navigation