Structural, vibrational and microwave properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ba(Mg1/3Nb2/3)O3


Vibrational and microwave dielectric properties of xLa(Mg1/2Ti1/2)O3–(1−x)Ba(Mg1/3Nb2/3)O3 (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) synthesized by the solid-state reaction technique are investigated. The Rietveld refinement of the X-ray diffraction (XRD) data confirms that Ba(Mg1/3Nb2/3)O3 (x = 0.0) adopts the 1:2-ordered structure with trigonal P-3m1 space group, whereas La(Mg1/2Ti1/2)O3 (x = 1) has monoclinic P21/n crystal structure. Both the materials have single phase crystal structure. For x = 0.1, the sample is found to have double phase. Further, with the increase in the value of x, the crystal structure becomes monoclinic P21/n. The vibrational properties of the materials are studied by the Raman spectroscopy and are correlated with the structural parameters. All the materials show high dielectric constant (εr > 35) at microwave range. The factors affecting the microwave dielectric properties are discussed based on the vibrational and structural data.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1

    Cava R J 2001 J. Mater. Chem. 11 54

    CAS  Article  Google Scholar 

  2. 2

    Desu S B and O’Bryan H M 1985 J. Am. Ceram. Soc. 68 546

    CAS  Article  Google Scholar 

  3. 3

    Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J and Setter N 2003 J. Electroceram. 11 5

    CAS  Article  Google Scholar 

  4. 4

    Akbas M A and Davies P K 1998 J. Am. Ceram. Soc. 81 670

    CAS  Article  Google Scholar 

  5. 5

    Wu J Y and Bian J J 2013 Ceram. Int. 30 3614

    Google Scholar 

  6. 6

    Wang S F, Wang Y R, Liu C Y and Hsieh W S 2012 Ceram. Int. 38 1127

    CAS  Article  Google Scholar 

  7. 7

    Kim B K, Hamaguchi H, Kim I T and Hong K S 1995 J. Am. Ceram. Soc. 78 3117

    CAS  Article  Google Scholar 

  8. 8

    Matsumoto H, Tamura H and Wakino K 1991 Jpn. J. Appl. Phys. 30 2347

    CAS  Article  Google Scholar 

  9. 9

    Veres A, Marinel S and Roulland F 2005 J. Eur. Ceram. Soc. 25 2759

    CAS  Article  Google Scholar 

  10. 10

    Zhang J, Yue Z and Li L 2018 J. Am. Ceram. Soc. 101 1974

    CAS  Article  Google Scholar 

  11. 11

    Sun T L and Chena X M 2015 AIP Adv. 5 017106

    Article  Google Scholar 

  12. 12

    Munpakdee A, Tontragoon J, Siriwtayakorn K and Tunkasiri T 2003 J. Mater. Sci. Lett. 22 1307

    CAS  Article  Google Scholar 

  13. 13

    Galasso F and Pyle J 1963 J. Phys. Chem. 67 1561

    CAS  Article  Google Scholar 

  14. 14

    Moreira R L, Andreeta M R B, Hernandes A C and Dias A 2005 Cryst. Growth Des. 5 1457

    CAS  Article  Google Scholar 

  15. 15

    Dias A and Moreira R L 2003 J. Appl. Phys. 94 3414

    CAS  Article  Google Scholar 

  16. 16

    Harshe G, Bhalla A S and Cross L E 1994 Mater. Lett. 18 173

    CAS  Article  Google Scholar 

  17. 17

    Avdeev M, Seabra M P and Ferreira V M 2002 J. Mater. Res. 15 1112

    Article  Google Scholar 

  18. 18

    Li B J, Wang S Y, Huang C L, Lin Y H and Chen Y B 2014 J. Ceram. Soc. Jpn. 122 951

    Article  Google Scholar 

  19. 19

    Seabra M P, Salak A N, Ferreira V M, Ribeiro J L and Vieira L G 2004 J. Eur. Ceram. Soc. 24 2995

    CAS  Article  Google Scholar 

  20. 20

    Khalyavin D D, Salak A N, Seabra M P, Senos A M R, Mantas P Q and Ferreira V M 2006 Mater. Res. Bull. 41 167

    CAS  Article  Google Scholar 

  21. 21

    Carvaja J R 1993 Physica B 192 55

    Article  Google Scholar 

  22. 22

    Chen M Y, Chia C T, Lin I N, Lin L J, Ahn C W and Nahm S 2006 J. Eur. Ceram. Soc. 26 1965

    CAS  Article  Google Scholar 

  23. 23

    Chia C T, Chen Y C, Cheng H F and Lin I N 2003 J. Appl. Phys. 94 3360

    CAS  Article  Google Scholar 

  24. 24

    Rousseau D L, Bauman R P and Porto S P S 1981 J. Raman Spectrosc. 10 253

    CAS  Article  Google Scholar 

  25. 25

    Dutta A, Kumari P and Sinha T P 2015 Electron. Mater. Lett. 11 775

    CAS  Article  Google Scholar 

  26. 26

    Reaney I M, Iqbal Y, Zheng H, Hughes H, Iddles D, Muir D et al 2005 J. Eur. Ceram. Soc. 25 1183

    CAS  Article  Google Scholar 

  27. 27

    Zheng H, Bagshaw H, de Gyorgyfalva G D C C, Reaney I M, Ubic R and Yarwood J 2003 J. Appl. Phys. 94 2948

    CAS  Article  Google Scholar 

  28. 28

    Khalam L A, Sreemoolanathan H, Ratheesh R, Mohanan P and Sebastian M T 2004 Mater. Sci. Eng. B 107 264

    Article  Google Scholar 

  29. 29

    Seabra M P, Avdeev M, Ferreira V M, Pullar R C and Alford N M 2003 J. Eur. Ceram. Soc. 23 2403

Download references


Ram Awdhesh Kumar thanks CSIR, New Delhi, for the award of NET-JRF (09/015(0486)/2015-EMR-I).

Author information



Corresponding author

Correspondence to Alo Dutta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.A., Dutta, A. & Sinha, T.P. Structural, vibrational and microwave properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ba(Mg1/3Nb2/3)O3. Bull Mater Sci 44, 36 (2021).

Download citation


  • Rietveld refinement
  • microwave dielectric
  • Raman spectroscopy