Skip to main content

Advertisement

Log in

Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The growth of photocatalysts that effectively remove organic contaminants is an essential environmental-remediation impartial. Here, we report an approach for the synthesis and surface modifications of vastly stable SnO2/TiO2 nanocomposites (NCs) that were prepared using hydrothermal techniques. The synthesized samples were assessed by X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscopy. Furthermore, UV–Vis diffuse reflectance spectroscopy was examined to assess the energy gap of the prepared samples. Furthermore, SnO2/TiO2 NCs can be used as the photocatalyst for degradation of methylene blue (MB) dye under solar light irradiation. The photocatalytic efficiency of the SnO2/TiO2 NCs was observed ~90% removal of MB dye under solar light irradiation. Moreover, it remains almost same over four successive cycles. A projected mechanism was discussed to expose the efficient degradation improvement of charge transfer along with various pathways and the pairs of NCs. Our present investigations highlight the potential of using SnO2/TiO2 NCs for a wide range of photocatalytic applications, also it may be used for various environmental remediation, food-industry applications and self-cleaning surface development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Manikandan V, Jayanthi P, Priyadharsan A, Vijayaprathap E, Anbarasan P M and Velmurugan P 2019 J. Photochem. Photobiol. A Chem. 371 205

    Article  CAS  Google Scholar 

  2. Singaram B, Jeyaram J, Rajendran R, Arumugam P and Varadharajan K 2019 Ionics 25 773

    Article  CAS  Google Scholar 

  3. Wang H, Liu S and Du S 2013 Org. Pollut. Monit. Risk Treat. https://doi.org/10.5772/53549

  4. WWAP 2019 Unesco 186

  5. Sauvé S and Desrosiers M 2014 Chem. Cent. J. 8 15

    Article  Google Scholar 

  6. Lamastra L, Balderacchi M and Trevisan M 2016 MethodsX 3 459

    Article  Google Scholar 

  7. Choudhury A K R 2006 Textile preparation and dyeing (Science Publishers)

  8. Chan S H S, Wu T Y, Juan J C and Teh C Y 2011 J. Chem. Technol. Biotechnol. 86 1130

  9. Singh K and Arora S 2011 Crit. Rev. Environ. Sci. Technol. 41 807

  10. Rasalingam S, Kibombo H S, Wu C M, Peng R, Baltrusaitis J and Koodali R T 2014 Appl. Catal. B: Environ. 148 394

  11. Kanamarlapudi S L R K, Chintalpudi V K and Muddada S 2018 Biosorption 18 69

  12. Gao Y, Yang B and Wang Q 2018 IOP Conf. Ser. Earth Environ. Sci. 178 012013

  13. Uday U S P, Bandyopadhyay T K and Bhunia B 2016 Bioremediation and detoxification technology for treatment of dye(s) from textile effluent. Textile wastewater treatment p 75

  14. Sun R 2010 Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose (Elsevier)

  15. Riordan M and Firestone A 1988 Phys. Today 41 90

    Article  Google Scholar 

  16. Zhang S, Xie M, Li F, Zhong Y, Yafei L, Erjun K et al 2016 Angew. Chemie 128 1698

    Article  Google Scholar 

  17. Hosono H, Kikuchi N, Ueda N and Kawazoe H 1996 J. Non.-Cryst. Solids 198 165

    Article  Google Scholar 

  18. Banerjee R, Jayakrishnan R and Ayyub P 2000 J. Phys. Condens. Matter 12 10647

    Article  CAS  Google Scholar 

  19. Lin H, Huang C P, Li W, Ni C, Shah S I and Tseng Y H 2006 Appl. Catal. B: Environ. 68 1

    Article  CAS  Google Scholar 

  20. Deb S K 2008 Sol. Energy Mater. Sol. Cells 92 245

    Article  CAS  Google Scholar 

  21. Mahajan S S, Mujawar S H, Shinde P S, Inamdar A I and Patil P S 2009 Sol. Energy Mater. Sol. Cells 93 183

    Article  CAS  Google Scholar 

  22. Cai G F, Tu J P, Zhang J, Mai Y J, Lu Y, Gu C D et al 2012 Nanoscale 4 5724

    Article  CAS  Google Scholar 

  23. Banica F-G 2012 Chem. Sensors Biosens. Fundam. Appl. (John Wiley & Sons)

  24. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J et al 2003 J. Optoelectron. Adv. Mater. 5 1335

    CAS  Google Scholar 

  25. Krishnakumar V, Boobas S, Jayaprakash J, Rajaboopathi M, Han B and Louhi-Kultanen M 2016 J. Mater. Sci.: Mater. Electron. 27 7438

    CAS  Google Scholar 

  26. García-Carmona J, Morales J G and Clemente R R 2003 J. Cryst. Growth 249 561

    Article  Google Scholar 

  27. Meier D L 1997 U.S. Patent No. 5,641,362, Patent and Trademark Office

  28. Mao L, Ba Q, Jia X, Liu S, Liu H, Zhang J et al 2019 RSC Adv. 9 1260

    Article  CAS  Google Scholar 

  29. Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z et al 2007 Adv. Mater. 19 1043

    Article  CAS  Google Scholar 

  30. Xin B, Ren Z, Wang P, Liu J, Jing L and Fu H 2007 Appl. Surf. Sci. 253 4390

    Article  CAS  Google Scholar 

  31. Shajahan S, Arumugam P, Rajendran R and Ponnusamy Munusamy A 2020 Arab J. Chem. 13 1309

    Article  CAS  Google Scholar 

  32. Shanavas S, Priyadharsan A, Dharmaboopathi K, Ragavan I, Vidya C and Anbarasan P M 2018 ChemistrySelect 3 12841

    Article  CAS  Google Scholar 

  33. Lupan O, Chow L, Chai G, Schulte A, Park S and Heinrich H 2009 Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 157 101

    Article  CAS  Google Scholar 

  34. Witit-Anun N, Rakkwamsuk P and Limsuwan P 2008 Adv. Mater. Res. 55 469

    Article  Google Scholar 

  35. Ranjith R, Krishnakumar V, Boobas S, Venkatesan J and Jayaprakash J 2018 ChemistrySelect 3 9259

    Article  CAS  Google Scholar 

  36. Chukanov N V and Vigasina M F 2020 Vibrational (Infrared and Raman) spectra of minerals and related compounds (Springer)

  37. Ashkarran A A, Aghigh S M, Kavianipour M and Farahani N J 2011 Curr. Appl. Phys. 11 1048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Jayamani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, S., Jayamani, N. & Barathi, D. Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation. Bull Mater Sci 44, 26 (2021). https://doi.org/10.1007/s12034-020-02291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02291-4

Keywords

Navigation