Skip to main content
Log in

TiO2–ZnO nanocomposites: synthesis, linear and nonlinear optical analysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

TiO2–ZnO binary heterojunctions with different molar ratios of TiO2 to ZnO have been prepared via a two-step co-precipitation method, including the synthesis of TiO2 nanoparticles (NPs) and then incorporating them into the ZnO matrix. Structural studies and elemental analysis have been carried out by a series of characterization techniques including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometer. The linear optical characteristics have been investigated using photoluminescence emission spectra at an excitation wavelength of 300 nm to estimate various energy states formed in crystalline structures. The optical nonlinearities of synthesized NPs have been tested by nanosecond laser pulse-based single-beam Z-scan technique. Closed-aperture and open-aperture Z-scan measurements have shown negative lens effects and reverse saturable absorption behaviours for as-synthesized composite nanostructures, respectively. The third-order susceptibilities of TiO2–ZnO nanocomposites have been estimated to be higher than that of pristine TiO2 NPs with a maximum value of 4.8 × 10−4 esu belonging to the sample with a 1:1 molar ratio of TiO2 to ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Long H, Chen A, Yang G, Li Y and Lu P 2009 Thin Solid Films 517 5601

    Article  CAS  Google Scholar 

  2. Ramya E, Rajashree C, Nayak P and Rao D N 2017 Appl. Clay Sci. 150 323

    Article  CAS  Google Scholar 

  3. Liao H, Xiao R, Wang H, Wong K and Wong G 1998 Appl. Phys. Lett. 72 1817

    Article  CAS  Google Scholar 

  4. Guo L-H, Wang Y-W, Jiang Y-Q, Xiao S and He J 2017 Chin. Phys. Lett. 34 077803

    Article  Google Scholar 

  5. Saalinraj S and Ajithprasad K 2017 Mater. Today: Proc. 4 4372

    Google Scholar 

  6. Hashimoto T, Yoko T and Sakka S 1994 Bull. Chem. Soc. Jpn. 67 653

    Article  CAS  Google Scholar 

  7. Yuwono A H, Xue J, Wang J, Elim H I and Ji W 2006 J. Electroceram. 16 431

    Article  CAS  Google Scholar 

  8. Gayvoronsky V, Galas A, Shepelyavyy E, Dittrich T, Timoshenko V Y, Nepijko S et al 2005 Appl. Phys. B 80 97

    Article  CAS  Google Scholar 

  9. Li Y, Sung C, Inguva R and Bowden C M 1989 J. Opt. Soc. Am. B 6 814

    Article  CAS  Google Scholar 

  10. Tong Q, Wang Y-H, Yu X-X, Wang B, Liang Z, Tang M et al 2018 Nanotechnology 29 165706

    Article  Google Scholar 

  11. Rao A S, Sethuraman G, Ghosh O S N, Viswanath A K and Sharan A 2016 NLS-25 Bhubaneswar, Odisha, India

  12. Rocha-Mendoza I, Camacho-López S, Luna-Palacios Y Y, Esqueda-Barrón Y, Camacho-López M A, Camacho-López M et al 2018 Opt. Laser Technol. 99 118

    Article  CAS  Google Scholar 

  13. Valligatla S, Chiasera A, Varas S, Das P, Bhaktha B S, Łukowiak A et al 2015 Opt. Mater. 50 229

    Article  CAS  Google Scholar 

  14. Xie J, Hao Y, Li M, Lian Y and Bian L 2017 World J. Eng. 14 279

    Article  CAS  Google Scholar 

  15. Irimpan L, Krishnan B, Nampoori V and Radhakrishnan P 2008 J. Colloid Interf. Sci. 324 99

    Article  CAS  Google Scholar 

  16. Han Y-B, Han J-B and Hao Z-H 2011 J. Nanosci. Nanotechnol. 11 5024

    Article  CAS  Google Scholar 

  17. Hosseini M, Haghighatzadeh A and Mazinani B 2019 Opt. Mater. 92 1

    Article  CAS  Google Scholar 

  18. Kanmani S and Ramachandran K 2012 Renew. Energy 43 149

    Article  CAS  Google Scholar 

  19. Gholami M, Shirzad-Siboni M, Farzadkia M and Yang J-K 2016 Desalin. Water Treat. 57 13632

    Article  CAS  Google Scholar 

  20. Batvandi M, Haghighatzadeh A and Mazinani B 2020 Appl. Phys. A 126 1

    Article  Google Scholar 

  21. Haghighatzadeh A, Hosseini M, Mazinani B and Shokouhimehr M 2019 Mater. Res. Express 6 115060

    Article  CAS  Google Scholar 

  22. Chen L-C, Tsai S-F, Chen J-H and Wang G-W 2013 Int. J. Photoenergy 2013 1

    Google Scholar 

  23. Chen L C, Chen J H, Tsai S F and Wang G W 2014 Appl. Mech. Mater. 479 69

    Google Scholar 

  24. Ganeshraja A S, Rajkumar K, Zhu K, Li X, Thirumurugan S, Xu W et al 2016 RSC Adv. 6 72791

    Article  CAS  Google Scholar 

  25. Klimov V I 2003 Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. (New York, USA: CRC Press) p 285

  26. Rakkesh R A and Balakumar S 2013 J. Nanosci. Nanotechnol. 13 370

    Article  CAS  Google Scholar 

  27. Zhang L and Jaroniec M 2018 Appl. Surf. Sci. 430 2

    Article  CAS  Google Scholar 

  28. Sharifimehr M R, Ayoubi K and Mohajerani E 2015 Opt. Mater. 49 147

    Article  CAS  Google Scholar 

  29. Sheik-Bahae M, Said A A, Wei T-H, Hagan D J and Van Stryland E 2003 SPIE Milestone Series 174 292

    Google Scholar 

  30. Ganeev R, Baba M, Morita M, Rau D, Fujii H, Ryasnyansky A et al 2004 J. Opt. A: Pure Appl. Opt. 6 447

    Article  CAS  Google Scholar 

  31. Feng W, Wei T, Li-Na M, Wen-Ju C, Gui-Lan Z, Guo-Feng Z et al 2008 Chin. Phys. Lett. 25 1461

    Article  Google Scholar 

  32. Kole A K, Kumbhakar P and Chatterjee U 2014 Chem. Phys. Lett. 591 93

    Article  CAS  Google Scholar 

  33. He J, Qu Y, Li H, Mi J and Ji W 2005 Opt. Express 13 9235

    Article  CAS  Google Scholar 

  34. Irimpan L, Nampoori V and Radhakrishnan P 2010 Sci. Adv. Mater. 2 117

    Article  CAS  Google Scholar 

  35. Deepika, Dhar R and Mohan D 2015 Mod. Phys. Lett. B 29 1550209

    Article  CAS  Google Scholar 

  36. Ramya E, Rao M V, Jyothi L and Rao D N 2018 J. Nanosci. Nanotechnol. 18 7072

    Article  CAS  Google Scholar 

  37. Abrinaei F and Shirazi M 2017 J. Mater. Sci.: Mater. Electron. 28 17541

    CAS  Google Scholar 

  38. Shaik U P, Kumar P A, Krishna M G and Rao S V 2014 Mater. Res. Express 1 046201

    Article  CAS  Google Scholar 

  39. Torres-Torres D, Trejo-Valdez M, Castañeda L, Torres-Torres C, Tamayo-Rivera L, Fernández-Hernández R et al 2010 Opt. Express 18 16406

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was partially supported by Ahvaz Branch of Islamic Azad University and we would like to thank the Research Council for their generous support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaker Mobaraki, M., Haghighatzadeh, A. TiO2–ZnO nanocomposites: synthesis, linear and nonlinear optical analysis. Bull Mater Sci 43, 297 (2020). https://doi.org/10.1007/s12034-020-02256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02256-7

Keywords

Navigation