Skip to main content
Log in

Adsorption effect of NO2 on ZnO (100 nm) nanowires, leading towards reduced reverse leakage current and voltage enhancement

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Here, we report the adsorption effect of NO2 on ZnO (100 nm) nanowires. We have studied the effect of adsorbed NO2 molecules on ZnO nanowire-based energy harvester for an exposure time of 1, 2, 3, 4, 5 and 6 h in a sealed chamber at 50 ppm which yielded piezoelectric voltage of 543.6 mV, 834.6 mV, 1.071 V, 1.78 V, 1.969 V and 2.835 V, respectively. We have thoroughly investigated the behaviour of ZnO nanowires in the presence of NO2 and observed a maximum output piezoelectric voltage of 2.835 V with a power density 158.2 mW cm−2. This is the first time that ZnO-based piezoelectric energy harvester is being used for the voltage enhancement in the presence of NO2. We have used vertically integrated nanowire generator (VING) structure. X-ray diffraction pattern revealed the growth orientation of ZnO nanowires were along the c-axis from the substrate. ZnO nanowires were grown on indium tin oxide-coated polyethylene terephthalate substrates via a hydrothermal route. Surface morphology has been examined by scanning electron microscopy images and diameter of ZnO nanowires was found to be around 100 nm. Piezoelectric voltage has been generated by the VING by applying minute external force of ~50 nN. Periodic output voltage peaks were being measured by picoscope 5204.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Morales A and Lieber C M 1998 Science 279 208

    Article  CAS  Google Scholar 

  2. Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66

    Article  CAS  Google Scholar 

  3. Cui Y and Lieber C M 2001 Science 291 851

    Article  CAS  Google Scholar 

  4. Huang Y, Duan X, Cui Y, Lauhon L, Kim K and Lieber C M 2001 Science 294 1313

    Article  CAS  Google Scholar 

  5. Odom T W, Huang J L, Kim P and Lieber C M 1998 Nature 391 62

    Article  CAS  Google Scholar 

  6. Dai H, Kong J, Zhou C, Franklin N, Tmobler T, Cassell A et al 1999 J. Phys. Chem. B 103 11246

    Article  CAS  Google Scholar 

  7. Fuhrer M S, Nygard J, Shih L, Forero M, Yoon Y-G, Mazzoni M S C et al 2000 Science 288 494

    Article  CAS  Google Scholar 

  8. Collins P G, Arnold M S and Avouris P 2001 Science 292 706

    Article  CAS  Google Scholar 

  9. Pan Z W, Dai Z R and Wang Z L 2001 Science 209 1947

    Article  Google Scholar 

  10. Tans S J, Verschueren R M and Dekker C 1998 Nature 393 49

    Article  CAS  Google Scholar 

  11. Dai Z R, Pan Z W and Wang Z L 2003 Adv. Funct. Mater. 13 9

    Article  Google Scholar 

  12. Kong X Y and Wang Z L 2003 Nano Lett. 3 1625

    Article  CAS  Google Scholar 

  13. Ahmad M, Kiely J and Luxton R 2014 Indian J. Eng. Mater. Sci. 21 672

    CAS  Google Scholar 

  14. Wang Z L and Song J H 2006 Science 312 242

    Article  CAS  Google Scholar 

  15. Ahmad M, Kiely J and Luxton R 2015 Sens. Bio-Sens. Res. 23 141

    Google Scholar 

  16. Amitender S and Sarvjeet S 2018 Bull. Mater. Sci. 41

  17. Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102

    Article  CAS  Google Scholar 

  18. Xiangxiang C, Yanbai S, Xiangxi Z and Tingting L 2019 J. Alloys Compd. 783 503

    Article  Google Scholar 

  19. Zhou J, Fei P, Gu Y, Mai W J, Gao Y F, Bao G et al 2008 Nano Lett. 8 3973

    Article  CAS  Google Scholar 

  20. Zhou J, Gu Y, Fei P, Mai W J, Gao Y F and Wang Z L 2008 Nano Lett. 8 3035

  21. Ahmad M, Kiely J and Luxton R 2017 J. Phys. Chem. Solids 104 281

    Article  CAS  Google Scholar 

  22. Wang Z L, Yang R, Zhou J, Yong Q and Hu Y 2010 Mater. Sci. Eng. R 70 320

  23. Xu S, Adiga N, Ba S, Dasgupta T, Wu C F J, Wang Z L et al 2009 ACS Nano 3 1803

    Article  CAS  Google Scholar 

  24. Yang R S, Qin Y, Dai L and Wang Z L 2009 Nat. Nanotechnol. 4 34

    Article  CAS  Google Scholar 

  25. Wang X D, Liu J, Song J and Wang Z L 2007 Nano Lett. 7 2475

    Article  CAS  Google Scholar 

  26. Yang R S, Qin Y, Li C, Dai L M and Wang Z L 2009 Appl. Phys. Lett. 94 022905

    Article  Google Scholar 

  27. Chaabouni F, Abaab M and Rezig B 2004 Sens. Actuators B 100 200

    Article  CAS  Google Scholar 

  28. Fan Z, Wang D, Chang P C, Tseng W and Lu J G 2004 Appl. Phys. Lett. 85 5923

    Article  CAS  Google Scholar 

  29. Chen X, Shen Y, Zhang W, Zhang J, Wei D, Lu R et al 2018 Appl. Surf. Sci. 35 1096

    Article  Google Scholar 

  30. Shen Y, Wang W, Chen X, Zhang B, Wei D, Gao S et al 2016 J. Mater. Chem. A 4 1345

    Article  CAS  Google Scholar 

  31. Schneider C A, Rasband W S and Eliceiri K W 2012 Nat. Methods 9 671

    Article  CAS  Google Scholar 

  32. Singh A and Vishwakarma H L 2015 Mater. Sci. 33 4

    Google Scholar 

  33. Sarkar S and Basak D 2013 Sens. Actuators B 176 374

    Article  CAS  Google Scholar 

  34. Cheng H, Cheng C S, Chang C and Yang S 2005 Nanotechnology 16 297

    Article  Google Scholar 

  35. Chang J F, Kuo H, Leu I C and Hon M H 2002 Sens. Actuators B 84 258

    Article  CAS  Google Scholar 

  36. Wei Z and Xiao T R 2016 Precis. Eng. 43 299

    Article  Google Scholar 

  37. Li H, Xu Y, Shao M and Guo L 2018 Mater. Sci. Eng. 399 012031

  38. Shinde V R, Gujar T P and Lokhande C D 2007 Sens. Actuators B 123 701

    Article  CAS  Google Scholar 

  39. Tilke A T, Simmel F C, Lorenz H, Blick R H and Kotthaus J P 2003 Phys. Rev. B 68 75311

    Article  Google Scholar 

  40. Yang R S, Qin Y, Li C, Zhu G and Wang Z L 2009 Nano Lett. 9 1201

    Article  CAS  Google Scholar 

  41. Cheng Y, Shang C and Jun A 2011 Microelectron. Eng. 88 3015

    Article  CAS  Google Scholar 

  42. Sheng X, Yong Q, Chen X, Yaguang W, Yang R and Wang Z L 2010 Nat. Nanotechnol. 5 366

    Article  Google Scholar 

  43. Suo B, Zhanga L, Xua Q, Youbin Z, Yong Q and Wang Z L 2013 Nano Energy 2 749

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the Postdoctoral Research Grant and research fund E15501, Research Management Center from Universiti Tun Hussein Onn (UTHM) Malaysia. We are grateful to MiNT-SRC, UTHM, Malaysia for extending their experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Ahmad, M.K., Nafarizal, N. et al. Adsorption effect of NO2 on ZnO (100 nm) nanowires, leading towards reduced reverse leakage current and voltage enhancement. Bull Mater Sci 43, 267 (2020). https://doi.org/10.1007/s12034-020-02237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02237-w

Keywords

Navigation