Skip to main content
Log in

Cation co-doping into ZnS quantum dots: towards visible light sensing applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Efficient and environmentally benign visible light responsive materials have been sought after owing to their interesting applications such as visible light photocatalysis, visible light water splitting and visible light sensing. In this research study, the effect of co-doping on the absorption and electrical properties of ZnS quantum dots is studied. Upon co-doping of Fe and Cu into ZnS quantum dots, a new absorption band in the visible region is observed. Furthermore, these quantum dots show photoresponse in the visible region unlike their undoped counterparts that is only effective in the UV region, suggesting their utility in light sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L et al 2008 J. Am. Chem. Soc. 130 7176

    Article  CAS  Google Scholar 

  2. Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269

    Article  CAS  Google Scholar 

  3. Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    Article  CAS  Google Scholar 

  4. Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    Article  CAS  Google Scholar 

  5. Mallows J, Planells M, Thakare V, Bhosale R, Ogale S and Robertson N 2015 ACS Appl. Mater. Interfaces 7 27597

    Article  CAS  Google Scholar 

  6. Konstantatos G and Sargent E H 2010 Nat. Nanotech. 5 391

    Article  CAS  Google Scholar 

  7. Konstantatos G, Clifford J, Levina L and Sargent E H 2007 Nat. Photon. 1 531

    Article  CAS  Google Scholar 

  8. Mridha S and Basak D 2007 J. Appl. Phys. 101 083102

    Article  Google Scholar 

  9. Sakai T, Seo H, Aihara S, Kubota M, Egami N, Wang D et al 2012 Jpn. J. Appl. Phys. 51 010202

    Google Scholar 

  10. Chang T H, Chiu C J, Chang S J, Tsai T Y, Yang T H, Huang Z D et al 2013 Appl. Phys. Lett. 102 221104

    Article  Google Scholar 

  11. Zan H-W, Chen W-T, Hsueh H-W, Kao S-C, Ku M-C, Tsai C-C et al 2010 Appl. Phys. Lett. 97 221104

    Article  Google Scholar 

  12. Liu X, Yang X, Liu M, Tao Z, Dai Q, Wei L et al 2014 Appl. Phys. Lett. 104 113501

    Article  Google Scholar 

  13. Wang X, Xie Z, Huang H, Liu Z, Chen D and Shen G 2012 J. Mater. Chem. 22 6845

    Article  CAS  Google Scholar 

  14. Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L et al 2012 Adv. Mater. 24 2305

    Article  CAS  Google Scholar 

  15. Game O, Singh U, Kumari T, Banpurkar A and Ogale S 2014 Nanoscale 6 503

    Article  CAS  Google Scholar 

  16. Li H, Wang X, Xu J, Zhang Q, Bando Y, Golberg D et al 2013 Adv. Mater. 25 3017

    Article  CAS  Google Scholar 

  17. Liu Z, Chen G, Liang B, Yu G, Huang H, Chen D et al 2013 Opt. Express 21 7799

    Article  CAS  Google Scholar 

  18. Xie X and Shen G 2015 Nanoscale 7 5046

    Article  CAS  Google Scholar 

  19. Tan H, Fan C, Ma L, Zhang X, Fan P, Yang Y et al 2016 Nano-Micro Lett. 8 29

    Article  Google Scholar 

  20. Miao J, Hu W, Guo N, Lu Z, Zou X, Liao L et al 2014 ACS Nano 8 3628

    Article  CAS  Google Scholar 

  21. Yang C, Pan H, Liu S, Miao S, Zhang W-H, Jie J et al 2015 Chem. Commun. 51 2593

    Article  CAS  Google Scholar 

  22. Qin H, Li W, Xia Y and He T 2011 ACS Appl. Mater. Interfaces 3 3152

    Article  CAS  Google Scholar 

  23. Kouser S, Lingampalli S R, Chithaiah P, Roy A, Saha S, Waghmare U V et al 2015 Angew. Chem. Int. Ed. 54 8149

  24. Chongsri K and Pecharapa W 2014 Energy Proc. 56 554

    Article  CAS  Google Scholar 

  25. Gai Y, Li J, Li S-S, Xia J-B and Wei S-H 2009 Phys. Rev. Lett. 102 036402

    Article  Google Scholar 

  26. Long R and English N J 2011 Appl. Phys. Lett. 98 142103

    Article  Google Scholar 

  27. Saravanan R S S, Pukazhselvan D and Mahadevan C 2012 J. Alloys Compd. 517 139

    Article  CAS  Google Scholar 

  28. Li L S, Pradhan N, Wang Y and Peng X 2004 Nano Lett. 4 2261

    Article  CAS  Google Scholar 

  29. Kimi M, Yuliati L and Shamsuddin M 2015 J. Nanomater. 2015 1

  30. Kimi M, Yuliati L and Shamsuddin M 2014 Adv. Mater. Res. 1024 368

  31. Prasanth S, Irshad P, Raj D R, Vineeshkumar T, Philip R and Sudarsanakumar C 2015 J. Lumin. 166 167

    Article  CAS  Google Scholar 

  32. Akhtar M S, Riaz S and Naseem S 2015 Mater. Today: Proc. 2 5528

    Google Scholar 

  33. Srivastava B B, Jana S, Karan N S, Paria S, Jana N R, Sarma D et al 2010 J. Phys. Chem. Lett. 1 1454

    Article  CAS  Google Scholar 

  34. Saha A, Makkar M, Shetty A, Gahlot K, Pavan A and Viswanatha R 2017 Nanoscale 9 2806

    Article  CAS  Google Scholar 

  35. Grandhi G K, Tomar R and Viswanatha R 2012 ACS Nano 6 9751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge JNCASR, Sheikh Saqr Laboratory and Department of Science and Technology, Government of India for financial support. GKG and PM thank CSIR for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RANJANI VISWANATHA.

Additional information

This article is part of the Topical Collection: SAMat Focus Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GRANDHI, G.K., KRISHNA, M., MONDAL, P. et al. Cation co-doping into ZnS quantum dots: towards visible light sensing applications. Bull Mater Sci 43, 301 (2020). https://doi.org/10.1007/s12034-020-02233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02233-0

Keywords

Navigation