Skip to main content

Advertisement

Log in

Enhanced hydrogen evolution reactivity on \({\mathrm{Mo}}_2{\mathrm{C}}\)\({\mathrm{Mo}}_2{\mathrm{N}}\) composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We have studied the electrolysis of water, by performing a combined experimental and theoretical study of the hydrogen evolution reaction (HER) capability of \({\mathrm{Mo}}_2{\mathrm{C}}\)\({\mathrm{Mo}}_2{\mathrm{N}}\) composites. Experimentally, we have synthesized nanowires with varying \({\mathrm{Mo}}_2{\mathrm{C}}\):\({\mathrm{Mo}}_2{\mathrm{N}}\) ratios. We have found that the composites show good HER activity in an acidic medium, that is superior to that of either pristine \({\mathrm{Mo}}_2{\mathrm{C}}\) or \({\mathrm{Mo}}_2{\mathrm{N}}\). These experimental results are supported by ab initio density functional theory calculations. Interestingly, we find that it is vital to incorporate van der Waals corrections to accurately reproduce the experimentally observed structural transition from an orthorhombic to tetragonal phase as x, the N concentration in \({\mathrm{Mo}}_2{\mathrm{C}}_{1-x}{\mathrm{N}}_x\), is increased. By computing Gibbs free energy for H adsorption on \({\mathrm{Mo}}_2{\mathrm{C}}_{1-x}{\mathrm{N}}_x\) surfaces, our calculations confirm the experimental finding that mixed systems have superior HER activity to pristine systems, with N-rich systems being most active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Wallace J S and Ward C 1983 Int. J. Hydrogen Energy 8 255

    CAS  Google Scholar 

  2. Rohland B, Nitsch J and Wendt J 1992 J. Power Sources 37 271

    CAS  Google Scholar 

  3. Miles M, Klaus E, Gunn B, Locker J, Serafin W and Srinivasan S 1978 Electrochim. Acta 23 521

    CAS  Google Scholar 

  4. Nørskov J K and Bligaard T 1972 J. Electrochem. Soc. 152 J23

    Google Scholar 

  5. Vrubel H and Hu X 2012 Angew. Chem. Int. Ed. 51 12703

    CAS  Google Scholar 

  6. Scanlon M D, Bian X, Vrubel H, Amstutz V, Schenk K, Hu X et al 2013 Phys. Chem. Chem. Phys. 15 2847

    CAS  Google Scholar 

  7. Michalsky R, Zhang Y and Petersen A A 2014 ACS Catal. 4 1274

    CAS  Google Scholar 

  8. Chen W F, Muckerman J T and Fujita E 2013 Chem. Commun. 49 8896

    CAS  Google Scholar 

  9. Cao B, Veith G M, Neufeind J C, Adzic R R and Khalifah P G 2013 J. Am. Chem. Soc. 135 19186

    CAS  Google Scholar 

  10. Chen W F, Sasaki K, Ma C, Frenkel I and Marinkovic N 2012 Angew. Chem. Int. Ed. 51 6131

    CAS  Google Scholar 

  11. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H et al 2014 Chem. Sci. 5 4615

    CAS  Google Scholar 

  12. Morales-Guio C G, Stern L A and Hu X 2014 Chem. Soc. Rev. 43 6555

    CAS  Google Scholar 

  13. Zhang H, Lei L and Zhang X 2014 RSC Adv. 4 54344

    CAS  Google Scholar 

  14. Zhang H, Li Y, Zhang G, Xu T, Wan P and Sun X 2015 J. Mater. Chem. A 3 6306

    CAS  Google Scholar 

  15. Xing Z, Liu Q, Asiri A M and Sun X 2014 Adv. Mater. 26 5702

    CAS  Google Scholar 

  16. Jiang P, Liu Q, Liang Y, Tian J, Asiri A M and Sun X 2014 Angew. Chem. Int. Ed. 53 12855

    CAS  Google Scholar 

  17. Kibsgaard J, Tsai C, Chan K, Benck J D, Nørskov J K, Abild-Pedersen F et al 2015 Energy Environ. Sci. 8 3022

    CAS  Google Scholar 

  18. Caben-Acevedo M, Stone M L, Thomas J G, Ding Q, Chang H C, Tsai M L et al 2015 Nat. Mater. 14 1245

    Google Scholar 

  19. Ang H, Tan H T, Luo Z M, Zhang Y, Guo Y Y, Guo G et al 2015 Small 47 6278

    Google Scholar 

  20. Chen W F, Iyer S, Sasaki K, Wang C H, Zhu Y and Muckerman J T 2013 Energy Environ. Sci. 6 1818

    CAS  Google Scholar 

  21. Bockris J and Potter E 1952 J. Electrochem. Soc. 99 169

    CAS  Google Scholar 

  22. Bagotsky V S (ed) 2005 Fundamentals of electrochemistry, vol 44 (New York: Wiley)

    Google Scholar 

  23. Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S et al 2005 J. Electrochem. Soc. 152 J23

    Google Scholar 

  24. Sabatier P 1911 Ber. Dtsch. Chem. Ges. 44 1984

    CAS  Google Scholar 

  25. Esposito D V, Hunt S T, Kimmel Y C and Chen J G 2012 J. Am. Chem. Soc. 134 3025

    CAS  Google Scholar 

  26. Kohn W and Sham L J 1965 Phys. Rev. A 140 1133

    Google Scholar 

  27. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

    Google Scholar 

  28. Baroni S, De Gironcoli S, Dal Corso A and Gianozzi P 2001 Rev. Mod. Phys. 73 515

    CAS  Google Scholar 

  29. Hammer B, Hansen L B and Nørskov J K 1999 Phys. Rev. B 46 7413

    Google Scholar 

  30. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavaz-zoni C et al 2009 J. Phys. Condens. Matter 21 395502

    Google Scholar 

  31. Vanderbilt D 1990 Phys. Rev. B 41 7892

    CAS  Google Scholar 

  32. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Google Scholar 

  33. Grimme S 2006 J. Comput. Chem. 27 1787

    CAS  Google Scholar 

  34. Posada-Pérez S, Viñes F, Valero R, Rodriguez J A and Illas F 2017 Surf. Sci. 656 24

    Google Scholar 

  35. Klimeš J and Michaelides A 2012 J. Chem. Phys. 137 120901

    Google Scholar 

  36. Marzari N, Vanderbilt D, De Vita A and Payne M C 1999 Phys. Rev. Lett. 82 3296

    CAS  Google Scholar 

  37. Bengtsson L 1999 Phys. Rev. B 59 12301

    CAS  Google Scholar 

  38. Hammer B and Nørskov J K 2000 Adv. Catal. 45 71

    CAS  Google Scholar 

  39. Stamenkovic V M, Bongjin S M, Mayrhofer J J, Markovic P N, Rossmeisl N M and Nørskov J K 2006 Angew. Chem. Int. Ed. 45 2897

    CAS  Google Scholar 

  40. Bader R F W 1985 Acc. Chem. Res. 18 9

    CAS  Google Scholar 

  41. Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204

    CAS  Google Scholar 

  42. Crystallography open database, http://www.crystallography.net

  43. Baba K and Yamanaka S 2005 Chem. Mater. 17 5935

    Google Scholar 

  44. Li L, Larsen H, Romero N A, Morozov V A, Glinsvad C, Abild-Pedersen F et al 2013 J. Phys. Chem. Lett. 4 222

    CAS  Google Scholar 

  45. Ojha K, Saha S, Kumar B, Hazra K S and Ganguli A K 2016 ChemCatChem 8 1218

    CAS  Google Scholar 

  46. Liu P, Rodriguez J A and Muckerman J T 2004 J. Phys. Chem. B 108 15662

    CAS  Google Scholar 

  47. Kibler L A, El-Aziz A M, Hoyer R and Kolb D M 2005 Angew. Chem. Int. Ed. 44 2080

    CAS  Google Scholar 

  48. Vojvodic A, Nørskov J K and Abild-Pedersen F 2014 Chem. Phys. Lett. 57 25

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHOBHANA NARASIMHAN.

Additional information

This article is part of the Topical Collection: SAMat Focus Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ACHARYA, D., OJHA, K., MAMMEN, N. et al. Enhanced hydrogen evolution reactivity on \({\mathrm{Mo}}_2{\mathrm{C}}\)\({\mathrm{Mo}}_2{\mathrm{N}}\) composites. Bull Mater Sci 43, 321 (2020). https://doi.org/10.1007/s12034-020-02230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02230-3

Keywords

Navigation