Skip to main content
Log in

Structural, impedance and electrical evaluation of complex perovskite: Ca(Mn1/3Ni1/3W1/3)O3

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A complex perovskite Ca(Mn1/3Ni1/3W1/3)O3, abbreviated as CMNWO, is synthesized by adopting the solid-state ceramic procedure. The X-ray diffraction analysis of CMNWO shows that the present perovskite is acquiring a cubic crystal structure having the cell dimension of a = 3.8321 Å. The obtained cell parameter is in good agreement with the theoretical cell parameter obtained from the SPuDS-V2.19.05.14 code. The micrograph describes the uniform grain distribution in the CMNWO sample. The average crystallite size of the sample was found to be 50.98 nm, which was calculated using the Scherrer relation. The dielectric and electrical properties like dielectric constant, dissipation factor, impedance, electrical modulus and conductivity of CMNWO were studied. The activation energies were determined from the AC-conductivity data in the temperature range of 200–350°C and 360–500°C. The dielectric spectra with temperature suggest that the present CMNWO is semiconducting in nature and follows the negative temperature coefficient of resistance kind of behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure. 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Schmid H 1994 Ferroelectrics 162 317

    Article  Google Scholar 

  2. Khomskii D 2009 Physics 2 20

    Article  Google Scholar 

  3. Cheng Z and Lin J 2010 CrystEngComm 12 2646

    Article  CAS  Google Scholar 

  4. Warner T E (ed) 2011 Synthesis, properties and mineralogy of important inorganic materials (Chichester: John Wiley & Sons Ltd)

  5. Schaak R E and Mallouk T E 2000 Chem. Mater. 12 3427

    Article  CAS  Google Scholar 

  6. Uma S, Raju A R and Gopalakrishnan J 1993 J. Mater. Chem. 3 709

    Article  CAS  Google Scholar 

  7. Tsunoda Y, Sugimoto W and Sugahara Y 1993 Chem. Mater. 15 632

    Article  Google Scholar 

  8. Ramadass N 1978 Mater. Sci. Eng. 36 231

    Article  CAS  Google Scholar 

  9. Klarbring J and Simak S I 2018 Phys. Rev. B 97 024108

    Article  CAS  Google Scholar 

  10. Zhou D, Zhou T, Tian Y, Zhu X and Tu Y 2018 J. Nanomater. 2018 1

    Article  Google Scholar 

  11. Švarcová S, Wiik K, Tolchard J, Bouwmeester H J and Grande T 2008 Solid State Ion. 178 1787

    Article  Google Scholar 

  12. Goncalves Ferreira L, Redfern S A, Artacho E and Salje E K 2008 Phys. Rev. Lett. 101 097602

    Article  Google Scholar 

  13. Haines J, Rouquette J, Bornand V, Pintard M, Papet P and Gorelli F 2003 J. Raman Spectrosc. 34 519

    Article  CAS  Google Scholar 

  14. Johnsson M and Lemmens P 2007 in Handbook of magnetism and advanced magnetic materials H Kronmüller and S Parkin (eds) (UK: John Wiley & Sons Ltd) p 2098

  15. Galasso F S 1993 (ed) Structure, properties and preparation of perovskite-type compounds (New York: Pergamon Press) p 3

  16. Padhy M, Dehury S K, Choudhary R N P and Achary P G R 2020 Appl. Phys. A 126 655

  17. Ishihara T (ed) 2009 Perovskite oxide for solid oxide fuel cells. Fuel cells and hydrogen energy (Boston, MA: Springer) p 1

  18. Parida K, Dehury S K and Choudhary R N P 2016 J. Mater.: Sci.: Mater. Electron 27 11211

    CAS  Google Scholar 

  19. Dehury S K, Parida K and Choudhary R N P 2017 J. Mater.: Sci.: Mater. Electron 28 10441

    CAS  Google Scholar 

  20. Ranjan R, Pandey D, Paranjpe S K, Krishna P S R and Siruguri V 1999 J. Phys.: Condens. Matter 11 2233

    CAS  Google Scholar 

  21. Alexander L and Klug H P 1950 J. Appl. Phys. 21 137

    Article  CAS  Google Scholar 

  22. Lufaso M W and Woodward P M 2001 Acta Cryst. B57 725

    Article  CAS  Google Scholar 

  23. Wagner K W 1993 Ann. Phys. 40 818

    Google Scholar 

  24. Koops C G 1951 Phys. Rev. 83 121

    Article  CAS  Google Scholar 

  25. Patankar K K, Joshi S S and Chougule B K 2005 Phys. Lett. A 346 337

    Article  CAS  Google Scholar 

  26. Pawar R P and Puri V 2014 Ceram. Int. 40 10423

    Article  CAS  Google Scholar 

  27. Uchino K 1994 Ferroelectrics 151 321

    Article  CAS  Google Scholar 

  28. Westphal V, Kleemann W and Glinchuk M D 1992 Phys. Rev. Lett. 68 847

    Article  CAS  Google Scholar 

  29. Rayssi C, El Kossi S, Dhahri J and Khirouni K 2018 RSC Adv. 8 17139

    Article  CAS  Google Scholar 

  30. Ahmad M, Rafiq M A, Rasool K, Imran Z and Hasan M M 2013 J. Appl. Phys. 113 043704

    Article  Google Scholar 

  31. Kumar A, Singh B P, Choudhary R N P and Thakur A K 2005 J. Alloys Compd. 394 292

    Article  CAS  Google Scholar 

  32. Barik Subrat K, Choudhary R N P and Singh A K 2011 Adv. Mater. Lett. 2 419

    Article  Google Scholar 

  33. Imran Z, Rafiq M A and Hasan M M 2014 AIP Adv. 4 067137

    Article  Google Scholar 

  34. Ranjan Rajiv, Kumar Nawnit, Behera Banarji and Choudhary R N P 2014 Adv. Mater. Lett. 5 138

  35. Babu D and Jada S 2015 Int. J. Sci. Eng. Res. 3 194

    Google Scholar 

  36. Achary P G R, Dehury S K and Choudhary R N P 2018 J. Mater. Sci.: Mater. Electron 29 6805

    CAS  Google Scholar 

  37. Sen S, Choudhary R N P and Pramanik P 2007 Physica B Condens. Matter. 387 56

    Article  CAS  Google Scholar 

  38. Gabal M A E-F, Al Angari Y M and Obaid A Y 2013 C R. Chim. 16 704

    Article  CAS  Google Scholar 

  39. Belboukhari A, Choukri E, Gagou Y, Elmoznine R, Abdel-moula N, Neqali A et al 2014 Superlattices Microstruct. 71 7

    Article  CAS  Google Scholar 

  40. Khalid Sultan, Ikram M and Asokan K 2014 Vacuum 99 251

  41. Macedo P B, Moynihan C T and Bose R 1972 Phys. Chem. Glasses 13 171

    CAS  Google Scholar 

  42. Rasool K, Rafiq M, Ahmad M, Imran Z and Hasan M 2012 Appl. Phys. Lett. 101 253104

    Article  Google Scholar 

  43. Sasaki S, Prewitt C T and Bass J D 1987 Acta Cryst. 43 1668

    Article  Google Scholar 

  44. Ben Taher Y, Moutia N, Oueslati A and Gargouri M 2016 RSC Adv. 6 39750

    Article  CAS  Google Scholar 

  45. Ranjan R, Kumar R, Kumar N, Behera B and Choudhary R N P 2011 J. Alloys Compd. 509 6388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the UGC-DAE-CSR, Mumbai (CRS-M-297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Ganga Raju Achary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhy, M., Khatua, D., Dehury, S.K. et al. Structural, impedance and electrical evaluation of complex perovskite: Ca(Mn1/3Ni1/3W1/3)O3. Bull Mater Sci 43, 258 (2020). https://doi.org/10.1007/s12034-020-02229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02229-w

Keywords

Navigation