Skip to main content
Log in

Wear and thermal resistance properties of aluminium particulate microcomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Wear resistance and thermal stability are not fundamental properties of materials, but their effects are inevitable in applications involving two-body contact because of friction-induced wear and heat. Wear resistance and thermal stability of epoxy containing 10% by weight of 66.34 μm aluminium particles were examined using mass loss per sliding distance approach and glass transition temperature (Tg) was used as a parameter for thermal stability. The results obtained revealed a reduction in the wear rate due to addition of aluminium particles. About 62, 58 and 39% reductions at 9 N/0.65 m s−1; 9 N/1.3 m s−1 and 25 N/1.3 m s−1, respectively imply that both sliding speed (v) and the applied load (F) contribute to an increase in the wear rate. A lower coefficient of friction of epoxy aluminium composites signifies lower surface wear rate in comparison with that of the epoxy polymer upon contact with another body in applications. The linear model establishes that v with a P value of 0.0046 has a greater significant influence on the wear resistance of the composite than F with a higher P value (0.0103). By the model, the epoxy aluminium composite under 24.63 N is expected to experience a wear rate of 0.000537 g m−1 which is 1380% lower than that established by the results of the experiment. About 36% increase in Tg is observed and 2FI model affirms that there is a gradual increase in Tg with heat flow through the sample during the glass transition period. Hence, the 2FI model having adequate precision of 164 > 4 is appropriate to be used for navigating a design phase for thermal stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Bello S A, Agunsoye J O, Hassan S B, Zebase Kana M G and Raheem I A 2015 Tribol. Ind. 37 500

    Google Scholar 

  2. Allaoui A, Bai S, Cheng H M and Bai J B 2002 Compos. Sci. Technol. 62 1993

    CAS  Google Scholar 

  3. Asif A A, Rhee K Y, Park S J and Hui D 2013 Compos. B Eng. 45 308

    Google Scholar 

  4. Baghat S and Verma P K 2013 Int. J. Emerg. Technol. Adv. Eng. 3 427

    Google Scholar 

  5. Birsan I G, Circiumaru A, Bria V and Ungureanu V 2009 Tribol. Ind. 31 33

    Google Scholar 

  6. Bradley S 2004 PhD Thesis (Queensland: Queensland University of Technology)

  7. Brostow W, Goodman S H and Wahrmund J 2014 In H Dodiuk and S H Goodman (eds) Handbook of thermoset plastics 3rd edn (Boston: William Andrew Publishing) p 191

  8. Oh B S, Kim H S and Ma P 1996 Am. Chem. Soc. 252 111

  9. Chanap R 2012 Study of mechanical and flexural properties of coconut shell ash reinforced epoxy composites (Rourkela, India: National Institute of Technology)

  10. Chen H, Jacobs O, Wu W, Rüdiger G and Schädel B 2007 Polym. Test. 26 351

    CAS  Google Scholar 

  11. DiBerardino M F and Pearson R A 1998 MRS Proc. 515 239

    CAS  Google Scholar 

  12. Lukes R and Thiokol M 1987 The use of graphite/epoxy composite structures in space applications (Brigham City, Utah: Inc, Aerospace Group)

  13. Şahin Y and Harkin-Jones E 2015 Cogent Eng. 2 1

    Google Scholar 

  14. Cirino M, Pipes R B and Friedrich K 1987 J. Mater. Sci. 22 2481

    CAS  Google Scholar 

  15. Vasconcelos P V, Lino F J, Baptista A M and Neto R J L 2006 Wear 260 30

    CAS  Google Scholar 

  16. Samantrai S P, Raghavendra G and Acharya S K 2014 Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 228 463

    CAS  Google Scholar 

  17. Zhang L C, Zarudi I and Xiao K Q 2006 Wear 261 806

    CAS  Google Scholar 

  18. Visconti I C, Langella A and Durante M 2001 Appl. Compos. Mater. 8 179

    CAS  Google Scholar 

  19. Nak-Ho S and Suh N P 1979 Wear 53 129

    Google Scholar 

  20. Davoodi M M, Sapuan S M, Ahmad D, Ali A, Khalina A and Jonoobi M 2010 Mater. Des. 31 4927

    CAS  Google Scholar 

  21. Atuanya C U, Aigbodion V S and Nwigbo S C 2014 Mater. Des. 53 65

    CAS  Google Scholar 

  22. Bello S A, Agunsoye J O, Adebisi J A and Suleiman B H 2017 Acta Period. Technol. 48 25

    CAS  Google Scholar 

  23. Agunsoye J O, Odumosu A K and Dada O 2019 Int. J. Adv. Manuf. Technol. 102 893

    Google Scholar 

  24. Salleh Z, Islam M M, Yusop M Y M and Mun’aim M Idrus M A 2014 5th International Conference on Chemical, Biological and Environmental Engineering p 92

  25. Sarki J, Hassan S B, Aigbodion V S and Oghenevweta J E 2011 J. Alloys Compd. 509 2381

    CAS  Google Scholar 

  26. Zhang X, Alloul O, He Q, Zhu J, Verde M J, Li Y et al 2013 Polymer 54 3594

    CAS  Google Scholar 

  27. Zhou Y, Pervin F and Jeelani S 2007 J. Mater. Sci. 42 7544

    CAS  Google Scholar 

  28. Bello S A, Agunsoye J O, Adebisi J A, Raji N K, Adeyemo R G, Alabi A G F et al 2018 Eng. J. 22 97

    CAS  Google Scholar 

  29. Jafar H I, Ali N A and Shawky A 2011 J. Al-Nahrain Univ. 14 77

    Google Scholar 

  30. Jianwen X, Moon K-S, Tison C and Wong C P 2006 IEEE Trans. Adv. Packag. 29 295

    Google Scholar 

  31. Wetzel B, Rosso P, Haupert F and Friedrich K 2006 Eng. Fract. Mech. 73 2375

    Google Scholar 

  32. Agrawal A and Satapathy A 2014 Proc. Mater. Sci. 5 517

    CAS  Google Scholar 

  33. Jamaludin N, Anithambigai P, Shanmugan S and Mutharasu D 2014 Mater. Sci. Res. India 11 35

    Google Scholar 

  34. Mohd Hirmizi N H, Abu Bakar M, Tan W L, Abu Bakar N H H, Ismail J and See C H 2012 J. Nanomater. 2012 1

  35. Paul L, Jose T and Kulkarni S M 2009 First International Conference on nanostructured materials and nanocomposites (6–8 April 2009, Kottayam, India) p 203

  36. Senthilkumar N, Kalaichelvan K and Elangovan K 2012 Int. J. Mech. Mater. Eng. (IJMME) 7 214

    Google Scholar 

  37. Shashikanta S A, Ravigouda P and Thippeswamy E 2015 SSRG Int. J. Mech. Eng. (SSRG-IJME) 2 1

    Google Scholar 

  38. Srivastava V K and Verma A 2015 Am. J. Mater. Sci. 5 84

    Google Scholar 

  39. Vasconcelos P V, Lino F J, Magalhães A and Neto R J L 2005 J. Mater. Process. Technol. 170 277

    CAS  Google Scholar 

  40. Kim H J, Jung D H, Jung I H, Cifuentes J I, Rhee K Y and Hui D 2012 Compos. B Eng. 43 1743

    CAS  Google Scholar 

  41. Yousri O M, Abdellatif M H and Bassioni G 2018 Arab. J. Sci. Eng. 43 1511

    CAS  Google Scholar 

  42. Bello S A 2020 Compos. Commun. 17 5

    Google Scholar 

  43. Salam H, Dong Y, Davies I J and Pramanik A 2018 Adv. Compos. Mater. 27 511

    CAS  Google Scholar 

  44. Sarkar P, Modak N and Sahoo P 2015 Mater. Today: Proc. 2 2708

    Google Scholar 

  45. Pargi M N F, Teh P L, Hussiensyah S, Yeoh C K and Abd Ghani S 2015 Int. J. Mech. Mater. Eng. 10

  46. El-Zahraa F I, Abdel-Jaber G T, Khashaba M I and Ali W Y 2015 Mater. Sci. Appl. 06 200

    CAS  Google Scholar 

  47. Oliveira J D, Rocha R C and Galdino A G D S 2019 J. Mater. Res. Technol. 8 1729

    CAS  Google Scholar 

  48. Agunsoye J O, Talabi S I, Hassan S B, Awe I O, Bello S A and Aziakpono E 2014 J. Mater. Sci. Res. 3 23

    CAS  Google Scholar 

  49. Agunsoye J O, Bello S A, Bello L and Idehenre M M 2016 Adv. Prod. Eng. Manag. 11 5

    Google Scholar 

  50. Bello S A, Agunsoye J O, Adebisi J A, Raji N K and Hassan S B 2019 Wear resistance properties of epoxy aluminium microparticle composite (Kragujevac, Serbia: Faculty of Engineering, University of Kragujevac)

  51. Atuanya C U, Edokpia R O and Aigbodion V S 2014 Results Phys. 4 88

    Google Scholar 

  52. Bello S A, Agunsoye J O, Adebisi J A and Hassan S B 2018 Eng. Appl. Sci. Res. (EASR) 42 262

    Google Scholar 

  53. Cholake S T, Mada M R, Raman R K, Singh Y B, Zhao X, Rizkalla S et al 2014 Def. Sci. J. 64 314

    Google Scholar 

  54. Barbara H S 2004 Infrared spectroscopy: fundamentals and applications (Sydney, Australia: John Wiley & Son, University of Technology)

  55. Bein T, Bös J, Mayer D and Melz T 2012 In J Rowe (ed) Advanced materials in automotive engineering (Cambridge: Woodhead Publishing) p 254

    Google Scholar 

  56. Banu S 2018 Ind. Lubr. Tribol. 70 902

    Google Scholar 

  57. Agunsoye J O, Bello S A, Bamigbaiye A, Odunmosu K A and Akinboye I 2018 Eng. Appl. Sci. Res. 45 180

    Google Scholar 

  58. Idris U D, Aigbodion V S, Abubakar I J and Nwoye C I 2015 J. King Saud Univ. Eng. Sci. 27 185

    Google Scholar 

  59. Aigbodion V S, Hassan S B and Agunsoye J O 2012 Mater. Des. 33 322

    CAS  Google Scholar 

  60. Li S and Cui C 2016 J. Mater. Sci. 51 1829

    CAS  Google Scholar 

  61. Liu W, Hoa S V and Pugh M 2005 Compos. Sci. Technol. 65 2364

    CAS  Google Scholar 

  62. Rajasekhar P, Ganesan G and Senthilkumar C 2014 Procedia Eng. 97 2099

    CAS  Google Scholar 

  63. Bello S A, Agunsoye J O and Hassan S B 2018 High performance structural epoxy hybrid particulate nanocomposites for automobile applications (Malete, Nigeria: Kwara State University)

  64. Bello S A, Agunsoye J O, Adebisi J A, Adeyemo R G and Hassan S B 2018 J. King Saud Univ. Sci. 32 402

    Google Scholar 

  65. Pallant J 2005 SPSS survival manual (Australia: Allen & Unwin)

    Google Scholar 

  66. Rawlinson C 2006 Differential scanning calorimetry ‘Cooking with Chemicals’ (Bradford: School of Pharmacy University of Bradford)

    Google Scholar 

  67. Grisky R 1995 Polymer processing engineering (Netherlands: Springer)

    Google Scholar 

  68. Barrau S, Demont P, Maraval C, Bernes A and Lacabanne C 2005 Macromol. Rapid Commun. 26 390

    CAS  Google Scholar 

  69. USERCOM USERCOM, Germany, 2000

  70. Sui G, Jana S, Salehi-Khojin A, Neema S, Zhong W H, Chen H et al 2008 J. Appl. Polym. Sci. 109 247

    CAS  Google Scholar 

  71. Prabhakar M N, Shah A U R, Rao K C and Song J-I 2015 Fibers Polym. 16 1119

    CAS  Google Scholar 

  72. Kuilla T, Bhadra S, Yao D, Kim N H, Bose S and Lee J H 2010 Prog. Polym. Sci. 35 1350

    CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Department of Ceramics, Federal Industrial Institute of Research Oshodi, Lagos, Nigeria; Department of Chemical, Metallurgical and Materials Engineering, University of Johannesburg, South Africa and Department of Materials Science and Engineering, Kwara State University, Malete, Nigeria for their support in making this work a reality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefiu Adekunle Bello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, S.A. Wear and thermal resistance properties of aluminium particulate microcomposites. Bull Mater Sci 43, 261 (2020). https://doi.org/10.1007/s12034-020-02206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02206-3

Keywords

Navigation