Enhancement of proton conduction in carboxymethyl cellulose-polyvinyl alcohol employing polyethylene glycol as a plasticizer

Abstract

The present study deals with the enhancement of proton transport and conduction properties of solid polymer electrolyte (SPE)-based carboxymethyl cellulose (CMC) blended with polyvinyl alcohol (PVA) doped with ammonium nitrate (NH4NO3) and plasticized with various compositions of polyethylene glycol (PEG). The SPE system was successfully prepared using an economical method, the solution casting technique, and analysed by Fourier transform infrared spectroscopy and electrical impedance spectroscopy. The infrared spectra show that interaction had occurred at O–H and COO from CMC when PEG was added which prevailed the enhancement of ion dissociation. Glass transition measurement highlighted that the interaction between CMC–PVA–NH4NO3 and ethylene carbonate at 8 wt% give the most plasticization effect that achieved the lowest Tg. The highest conductivity of the SPE system achieved at ambient temperature was 1.70 × 10−3 S cm−1 for a non-plasticized sample, and further enhanced to 3.00 × 10−3 S cm−1 when 8 wt% PEG was incorporated into the SPE system. The sample with the highest conductivity was found to obey the Arrhenius behaviour with a function of temperature. The ionic conductivity of the SPE system was shown to be primarily influenced by a number of ions (η), ion mobility (μ) and diffusion coefficient (D).

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. [1]

    Kim J G, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O et al 2015 J. Power Sources 282 299

    CAS  Google Scholar 

  2. [2]

    Olivetti E, Gregory J and Kirchain R 2011 Study conducted for the National Electric Manufacturers Association (Cambridge, MA, USA: Massachusetts Institute of Technology)

    Google Scholar 

  3. [3]

    Chen J 2013 Materials 6 156

    Google Scholar 

  4. [4]

    Whittingham M S 2004 Chem. Rev. 104 4271

    CAS  Google Scholar 

  5. [5]

    Shamsudin I, Ahmad A, Hassan N H and Kaddami H 2016 Ionics 22 841

    CAS  Google Scholar 

  6. [6]

    Solarajan A K, Murugadoss V and Angaiah S 2017 J. Appl. Polym. Sci. 134 45177

    Google Scholar 

  7. [7]

    Singh T J and Bhat S 2003 Bull. Mater. Sci. 26 707

    CAS  Google Scholar 

  8. [8]

    Parameswaran V, Nallamuthu N, Devendran P, Nagarajan E R and Manikandan A 2017 Physica B 515 89

    CAS  Google Scholar 

  9. [9]

    Aziz S B 2013 Iran. Polym. J. 22 877

    CAS  Google Scholar 

  10. [10]

    Mazuki N, Fuzlin A, Saadiah M and Samsudin A 2019 Ionics 25 2657

    CAS  Google Scholar 

  11. [11]

    Mazuki N F, Abdul Majeed A P P, Nagao Y and Samsudin A S 2020 Polym. Test. 81 106234

    CAS  Google Scholar 

  12. [12]

    Saadiah M and Samsudin A 2018 AIP conference proceedings p 020223

  13. [13]

    Gondaliya N, Kanchan D and Sharma P 2013 Soc. Plast. Eng. 10 2417

    Google Scholar 

  14. [14]

    Subramaniam R T, Chiam-Wen L, Yee L P and Morris E 2012 Recent advances in plasticizers (London, UK: IntechOpen) Chapter 9 p 165

  15. [15]

    Bhide A and Hariharan K 2007 Eur. Polym. J. 43 4253

    CAS  Google Scholar 

  16. [16]

    Woo H J, Majid S R and Arof A K 2013 Solid State Ionics 252 102

    CAS  Google Scholar 

  17. [17]

    Gupta S and Varshney P K 2017 Ionics 23 1613

    CAS  Google Scholar 

  18. [18]

    Kumar R, Sharma S, Pathak D, Dhiman N and Arora N 2017 Solid State Ionics 305 57

    CAS  Google Scholar 

  19. [19]

    Shin J, Jung S, Kim K, Ahn H and Ahn J 2002 J. Mater. Sci.: Mater. Electron. 13 727

    CAS  Google Scholar 

  20. [20]

    Ng L S and Mohamad A A 2006 J. Power Sources 163 382

    CAS  Google Scholar 

  21. [21]

    Chai M and Isa M 2016 Sci. Rep. 6 27328

    CAS  Google Scholar 

  22. [22]

    Zainuddin N and Samsudin A 2018 Mater. Today Commun. 14 199

    CAS  Google Scholar 

  23. [23]

    Arof A, Amirudin S, Yusof S and Noor I 2014 Phys. Chem. Chem. Phys. 16 1856

    CAS  Google Scholar 

  24. [24]

    Zainuddin N, Rasali N and Samsudin A 2018 Ionics 24 3039

    CAS  Google Scholar 

  25. [25]

    Rasali N and Samsudin A 2018 Ionics 24 1639

    CAS  Google Scholar 

  26. [26]

    Ramlli M, Maksud M and Isa M 2017 AIP conference proceedings p 020001

  27. [27]

    Sathiyanarayanan P and Karunakaran R J 2015 J. Chem. Pharm. Res. 7 1099

    CAS  Google Scholar 

  28. [28]

    Karelin A I, Kayumov R R and Dobrovolsky Y A 2019 Spectrochim. Acta Part A 215 381

    CAS  Google Scholar 

  29. [29]

    Guo L, Sato H, Hashimoto T and Ozaki Y 2010 Macromolecules 43 3897

    CAS  Google Scholar 

  30. [30]

    Sharma P, Kanchan D, Gondaliya N, Pant M and Jayswal M S 2013 Ionics 19 301

    CAS  Google Scholar 

  31. [31]

    Deygen I M and Kudryashova E V 2016 Colloids Surf. B 141 36

  32. [32]

    Samsudin A, Aziz M and Isa M 2012 Int. J. Polym. Anal. Charact. 17 600

    CAS  Google Scholar 

  33. [33]

    Jiang H, Zhang Q, Zhang Y, Sui L, Wu G, Yuan K et al 2019 Phys. Chem. Chem. Phys. 21 10417

    CAS  Google Scholar 

  34. [34]

    Hemalatha R, Alagar M, Selvasekarapandian S, Sundaresan B, Moniha V, Boopathi G et al 2019 Ionics 25 141

    CAS  Google Scholar 

  35. [35]

    Greco A, Ferrari F and Maffezzoli A 2018 J. Therm. Anal. Calorim. 134 559

    CAS  Google Scholar 

  36. [36]

    Ahmadi-Khaneghah A, Omidi-Ghallemohamadi M and Behniafar H 2019 Int. J. Adhes. Adhes. 95 102430

    CAS  Google Scholar 

  37. [37]

    Devangamath S S, Lobo B, Masti S P and Narasagoudr S 2020 J. Mater. Sci.: Mater. Electron. 31 2904

    CAS  Google Scholar 

  38. [38]

    Vieira M G A, da Silva M A, dos Santos L O and Beppu M M 2011 Eur. Polym. J. 47 254

    CAS  Google Scholar 

  39. [39]

    Aziz S B, Woo T J, Kadir M F Z and Ahmed H M 2018 J. Sci. Adv. Mater. Dev. 3 1

    Google Scholar 

  40. [40]

    Zhao L, Fu J, Du Z, Jia X, Qu Y, Yu F et al 2020 J. Membr. Sci. 593 117428

    CAS  Google Scholar 

  41. [41]

    Singh P, Bharati D C, Gupta P N and Saroj A L 2018 J. Non-Cryst. Solids 494 21

    CAS  Google Scholar 

  42. [42]

    Saadiah M A and Samsudin A S 2018 IOP Conf. Ser.: Mater. Sci. Eng. 342 012045

    Google Scholar 

  43. [43]

    Muhammad F H, Jamal A and Winie T 2017 Ionics 23 3045

    CAS  Google Scholar 

  44. [44]

    Hafiza M N and Isa M I N 2020 J. Membr. Sci. 597 117176

    CAS  Google Scholar 

  45. [45]

    Ambika C, Karuppasamy K, Vikraman D, Lee J Y, Regu T, Ajith Bosco Raj T et al 2018 Solid State Ionics 321 106

  46. [46]

    Das S and Ghosh A 2015 Electrochim. Acta 171 59

    CAS  Google Scholar 

  47. [47]

    Dave G, Maheshwaran C and Kanchan D 2019 AIP conference proceedings p 030234

  48. [48]

    Samsudin A S and Saadiah M A 2018 J. Non-Cryst. Solids 497 19

    CAS  Google Scholar 

  49. [49]

    Ahmed H T, Jalal V J, Tahir D A, Mohamad A H and Abdullah O G 2019 Results Phys. 15 102735

    Google Scholar 

  50. [50]

    Selvalakshmi S, Mathavan T, Selvasekarapandian S and Premalatha M 2018 Ionics 24 2209

    CAS  Google Scholar 

  51. [51]

    Reddy C V S, Han X, Zhu Q-Y, Mai L-Q and Chen W 2006 Eur. Polym. J. 42 3114

    CAS  Google Scholar 

  52. [52]

    Selvasekarapandian S, Hema M, Kawamura J, Kamishima O and Baskaran R 2010 J. Phys. Soc. Jpn. 79 163

    Google Scholar 

  53. [53]

    Subban R H Y, Ahmad A, Kamarulzaman N and Ali A 2005 Ionics 11 442

    CAS  Google Scholar 

  54. [54]

    Balian S C, Ahmad A and Mohamed N 2016 Polymers 8 163

    Google Scholar 

  55. [55]

    Saadiah M A, Zhang D, Nagao Y, Muzakir S K and Samsudin A S 2019 J. Non-Cryst. Solids 511 201

    CAS  Google Scholar 

  56. [56]

    Rajendran S, Sivakumar M and Subadevi R 2003 J. Power Sources 124 225

    CAS  Google Scholar 

  57. [57]

    Ramesh S, Yahaya A and Arof A 2002 Solid State Ionics 152 291

    Google Scholar 

  58. [58]

    Rasali N, Nagao Y and Samsudin A 2019 Ionics 25 641

    CAS  Google Scholar 

  59. [59]

    Majid S and Arof A K 2005 Physica B 355 78

    CAS  Google Scholar 

  60. [60]

    Samsudin A and Isa M 2015 Adv. Mater. Res. 1108 27

    Google Scholar 

  61. [61]

    Noor N A M and Isa M I N 2019 Int. J. Hydrog. Energy 44 8298

    CAS  Google Scholar 

  62. [62]

    Ranjana P A B, Jeya S, Abarna S, Premalatha M, Arulsankar A and Sundaresan B 2019 J. Polym. Res. 26 38

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministry of Higher Education (MOHE) for FRGS grant (RDU 1901114) and UMP Internal Grant (RDU 190389), Faculty Industrial Science and Technology, Universiti Malaysia Pahang for technical and research support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A S Samsudin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saadiah, M.A., Tan, H.M. & Samsudin, A.S. Enhancement of proton conduction in carboxymethyl cellulose-polyvinyl alcohol employing polyethylene glycol as a plasticizer. Bull Mater Sci 43, 203 (2020). https://doi.org/10.1007/s12034-020-02179-3

Download citation

Keywords

  • CMC–PVA–NH4NO3
  • PEG
  • ionic transport