Skip to main content
Log in

Hydrophobic recovery of cross-linked polydimethylsiloxane films and its consequence in soft nano patterning

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Cross-linked polydimethylsiloxane (PDMS) films and surfaces obtained by thermal cross-linking of commercially available Sylgard 184 are widely utilized in many areas of science, due to superior thermal stability, low dielectric constant, transparency and biocompatibility. Cross-linked PDMS surfaces are weakly hydrophobic and several experiments, particularly the ones that utilize capillary-driven microscale flow require the modulation of the surface wettability. A well-known strategy to achieve the same is by exposing the Sylgard 184 surface to UV/ozone (UVO) treatment at room temperature. Depending on the duration of exposure, the wettability drops from hydrophobic to a near-complete wetting (water contact angle ~10°), due to the formation of a surface oxide layer. However, under normal atmospheric conditions, these surfaces recover their hydrophobicity over a period of time due to diffusive migration of the uncrosslinked oligomers to the surface, and formation of a hydrophobic dimethyl silicone layer. We explore the hydrophobic recovery process as a function of cross-linker concentration and UVO exposure time and show how a partially or fully recovered PDMS stamp may influence subsequent nanopatterning, including the possible creation of features with different morphology using a single stamp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sylgard 184 Product Data Sheet, http://www.dowcorning.com/DataFiles/090007b281eb2ada.pdf

  2. Park E J, Sim J K, Jeong M-G, Seo H O and Kim Y D 2013 RSC Adv. 3 12571

    CAS  Google Scholar 

  3. Firpo G, Angeli E, Repetto L and Valbusa U 2015 J. Membr. Sci. 481 1

    CAS  Google Scholar 

  4. Zuo P, Li X, Dominguez D C and Ye B-C 2013 Lab Chip 13 3921

    CAS  Google Scholar 

  5. Chuah Y J, Koh Y T, Lim K, Menon N V, Wu Y and Kang Y 2015 Sci. Rep. 5 18162

    CAS  Google Scholar 

  6. Xia Y and Whitesides G M 1998 Angew. Chem. Int. Ed. 37 550

  7. Das A, Banerji A and Mukherjee R 2017 ACS Appl. Mater. Interfaces 9 23255

    CAS  Google Scholar 

  8. Suh K Y, Kim Y S and Lee H H 2001 Adv. Mater. 13 1386

    CAS  Google Scholar 

  9. Roy R D, Sil D, Jana S, Bhandaru N, Bhadra S K, Biswas P K et al 2012 Ind. Eng. Chem. Res. 51 9546

    Google Scholar 

  10. Kumar A and Whitesides G M 1993 Appl. Phys. Lett. 63 2002

    CAS  Google Scholar 

  11. Xia Y, Kim E Y, Zhao X M, Rogers J A, Prentiss M and Whitesides G M 1996 Science 273 347

    CAS  Google Scholar 

  12. Cayre O, Paunov V N and Velev O D 2003 J. Mater. Chem. 13 2445

    CAS  Google Scholar 

  13. Guo L J 2007 Adv. Mater. 19 495

    CAS  Google Scholar 

  14. Jeon N L, Hu J, Whitesides G M, Erhardt M K and Nuzzo R G 1998 Adv. Mater. 10 1466

    CAS  Google Scholar 

  15. Kung L A, Kam L, Hovis J S and Boxer S G 2000 Langmuir 16 6773

    CAS  Google Scholar 

  16. Gorb S N and Scherge M 2000 Proc. R. Soc. Lond. B 267 1239

    CAS  Google Scholar 

  17. Varughese S M and Bhandaru N 2019 Soft Matter 16 1692

  18. McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H, Schueller O J et al 2000 Electrophoresis 21 27

    CAS  Google Scholar 

  19. Verma M K S, Majumder A and Ghatak A 2006 Langmuir 22 10291

    CAS  Google Scholar 

  20. Dey R, Bhandaru N, Mukherjee R and Chakraborty S 2014 Soft Matter 10 3451

    CAS  Google Scholar 

  21. Shull K R, Flanigan C M and Crosby A J 2000 Phys. Rev. Lett. 84 3057

    CAS  Google Scholar 

  22. Ghatak A, Chaudhury M K, Shenoy V and Sharma A 2000 Phys. Rev. Lett. 85 4329

    CAS  Google Scholar 

  23. Gonuguntla M, Sharma A, Sarkar J, Subramanian S A, Ghosh M and Shenoy V 2006 Phys. Rev. Lett. 97 018303

    Google Scholar 

  24. Sharma A, Gonuguntla M, Mukherjee R, Subramanian S A and Pangule R C 2007 J. Nanosci. Nanotechnol. 7 1744

    CAS  Google Scholar 

  25. Mukherjee R and Sharma A 2012 ACS Appl. Mater. Interfaces 4 355

    CAS  Google Scholar 

  26. Arun N, Sharma A, Shenoy V B and Narayan K S 2006 Adv. Mater. 18 660

    CAS  Google Scholar 

  27. Sahoo S, Bhandaru N and Mukherjee R 2019 Soft Matter 15 3828

    CAS  Google Scholar 

  28. Rajput M, Bhandaru N, Anura A, Pal M, Pal B, Paul R R et al 2016 ACS Biomater. Sci. Eng. 2 1528

    CAS  Google Scholar 

  29. Bhandaru N, Das A, Salunke N and Mukherjee R 2014 Nano Lett. 14 7009

    CAS  Google Scholar 

  30. Lee J N, Park C and Whitesides G M 2003 Anal. Chem. 75 6544

    CAS  Google Scholar 

  31. Duffy D C, McDonald J C, Schueller O J and Whitesides G M 1998 Anal. Chem. 70 4974

    CAS  Google Scholar 

  32. Bernard A, Delamarche E, Schmid H, Michel B, Bosshard H R and Biebuyck H 1998 Langmuir 14 2225

    CAS  Google Scholar 

  33. Makamba H, Kim J H, Lim K, Park N and Hahn J H 2003 Electrophoresis 24 3607

    CAS  Google Scholar 

  34. Zhou J W, Ellis A V and Voelcker N H 2010 Electrophoresis 31 2

    CAS  Google Scholar 

  35. Bhattacharya S, Datta A, Berg J M and Gangopadhyay S 2005 J. Microelectromech. Syst. 14 590

    CAS  Google Scholar 

  36. Berdichevsky Y, Khandurina J, Guttman A and Lo Y H 2004 Sens. Actuators B 97 402

    CAS  Google Scholar 

  37. Wei K, Rudy M S and Zhao Y 2014 RSC Adv. 4 59122

    CAS  Google Scholar 

  38. Hollahan J R and Carlson G L 1970 J. Appl. Polym. Sci. 14 2499

    CAS  Google Scholar 

  39. Fritz J L and Owen M J 1995 J. Adhes. 54 33

    CAS  Google Scholar 

  40. Olah A, Hillborg H and Vancso G J 2005 Appl. Surf. Sci. 239 410

    CAS  Google Scholar 

  41. Efimenko K, Wallace W E and Genzer J 2002 J. Colloid Interface Sci. 254 306

    CAS  Google Scholar 

  42. Hillborg H, Tomczak N, Olàh A, Schönherr H and Vancso G J 2004 Langmuir 20 785

    CAS  Google Scholar 

  43. Hillborg H, Ankner J F, Gedde U W, Smith G D, Yasuda H K and Wikstrom K 2000 Polymer 41 6851

    CAS  Google Scholar 

  44. Senzai T and Fuzikawa S 2019 Langmuir 35 9747

    CAS  Google Scholar 

  45. Bhandaru N, Roy S, Harikrishnan G and Mukherjee R 2013 ACS Macro Lett. 2 195

    CAS  Google Scholar 

  46. Bhandaru N, Sharma A and Mukherjee R 2016 ACS Appl. Mater. Interfaces 9 19409

    Google Scholar 

  47. Seung-Mo Lee S and Kwon T H 2007 J. Micromech. Microeng. 17 687

    Google Scholar 

  48. Saison T, Peroz C, Chauveau V, Berthier S, Elin Sondergard E and Arribart H 2008 Bioinsp. Biomim. 3 046004

    Google Scholar 

  49. Bhandaru N, Das A and Mukherjee R 2016 Nanoscale 8 1073

    CAS  Google Scholar 

  50. Ma K, Rivera J, Hirasaki G J and Biswal S L 2011 J. Colloid Interface Sci. 363 371

    CAS  Google Scholar 

  51. Roy S, Ansari K J, Jampa S S K, Vutukuri P and Mukherjee R 2012 ACS Appl. Mater. Interfaces 4 1887

    CAS  Google Scholar 

  52. Kim J, Chaudhury M K, Owen M J and Orbeck T J 2001 Colloid Interface Sci. 244 200

    CAS  Google Scholar 

  53. Oláh A, Hillborg H and Vancso G J 2005 Appl. Surf. Sci. 239 410

    Google Scholar 

  54. Eddington D T, Puccinelli J P and Beebe D J 2006 Sens. Actuators B 114 170

  55. Kim J, Chaudhury M K and Owen M J 2006 J. Colloid Interface Sci. 293 364

    CAS  Google Scholar 

  56. Bodas D and Khan-Malek C 2007 Sens. Actuators B 123 368

    CAS  Google Scholar 

  57. Jones R L, Hu T, Soles C L, Lin E K, Reano R M, Pang S W et al 2006 Nano Lett. 6 1723

    CAS  Google Scholar 

  58. Roy S, Bhandaru N, Das R, Harikrishnan G and Mukherjee R 2014 ACS Appl. Mater. Interfaces 6 6579

    CAS  Google Scholar 

  59. Bansal L, Seth P, Sahoo S, Mukherjee R and Basu S 2018 Appl. Phys. Lett. 113 213701

    Google Scholar 

Download references

Acknowledgements

NB acknowledges DST INSPIRE Faculty grant (DST/INSPIRE/04/2016/002396). RM acknowledges IMPRINT project (No. 7183) funded by DST and MHRD, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabibrata Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandaru, N., Agrawal, N., Banik, M. et al. Hydrophobic recovery of cross-linked polydimethylsiloxane films and its consequence in soft nano patterning. Bull Mater Sci 43, 186 (2020). https://doi.org/10.1007/s12034-020-02162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02162-y

Keywords

Navigation