Skip to main content
Log in

Structure and physical properties of the solid solution Gd2–xNdxPdSi3 (x = 0, 0.75, 1, 2)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The structural and magnetic properties of Gd2−xNdxPdSi3 (x = 0, 0.75, 1, 2) have been studied using X-ray diffraction (XRD), exchange bias and magnetization measurements. The end compounds (x = 0, 2) along with the solid solutions of them are found to crystallize in the hexagonal superstructure having space group P6/mmc. The rare-earth (RE) ions are occupying at two different crystallographically inequivalent sites (2b and 6h), which is similar to all ordered members of the RE2PdSi3 series. The absence of chemical phase separation and formation of true solid solutions are confirmed by the XRD analysis. No signature of exchange bias has been observed signifying the absence of coexistence of magnetic phases. The origin of complex magnetic behaviour in Gd2−xNdxPdSi3 is observed due to the separate magnetic ordering and two available crystallographic sites for magnetic ion. The spin-glass behaviour near ferromagnetic transition in Nd2PdSi3 and anomalous bifurcation in zero-field-cooled and field-cooled magnetization curves in Gd2PdSi3 originates from the proximity and overlap of the transition temperatures of the two RE magnetic ions present in two inequivalent sites, and strongly correlated to the interatomic and intra-atomic distances between RE atoms occupying two crystallographic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Peter S C, Malliakas C D, Chondroudi M, Schellenberg I, Rayaprol S, Hoffmann R D et al 2010 Inorg. Chem. 49 9574

    Article  CAS  Google Scholar 

  2. Sarkar S, Gutmann M J and Peter S C 2013 CrystEngComm 15 8006

    Article  CAS  Google Scholar 

  3. Sarkar S, Mumbaraddi D, Halappa P, Kalsi D, Rayaprol S and Peter S C 2015 J. Solid State Chem. 229 287

    Article  CAS  Google Scholar 

  4. Kalsi D, Subbarao U, Rayaprol S and Peter S C 2014 J. Solid State Chem. 212 73

    Article  CAS  Google Scholar 

  5. Kalsi D, Rayaprol S, Siruguri V and Peter S C 2014 J. Solid State Chem. 217 113

    Article  CAS  Google Scholar 

  6. Sarkar S, Kalsi D, Rayaprol S and Peter S C 2015 J. Alloys Compd. 632 172

    Article  CAS  Google Scholar 

  7. Mo J A, Shen J, Gao X Q, Liu Y, Tang C C, Wu J F et al 2014 J. Alloys Compd. 626 145

    Article  Google Scholar 

  8. Li D X, Nimori S, Shiokawa Y, Haga Y, Yamamoto E and Onuki Y 2003 Phys. Rev. B 68 012413

    Article  Google Scholar 

  9. Bhattacharyya A, Ritter C, Adroja D T, Coomer F C and Strydom A M 2016 Phys. Rev. B 94 014418

    Article  Google Scholar 

  10. Pakhira S, Mazumdar C, Ranganathan R, Giri S and Avdeev M 2016 Phys. Rev. B 94 104414

    Article  Google Scholar 

  11. Paulose P L, Sampathkumaran E V, Bitterlich H, Behr G and Löser W 2003 Phys. Rev. B 67 212401

    Article  Google Scholar 

  12. Li D, Zhao X and Nimori S 2009 J. Phys.: Condens. Matter 21 026006

    Google Scholar 

  13. Szlawska M, Majewicz M and Kaczorowski D 2014 J. Phys.: Condens. Matter 26 126002

    CAS  Google Scholar 

  14. Sarkar S, Roy S, Kalsi D and Peter S C 2017 Inorg. Chem. Front. 4 2097

    Article  CAS  Google Scholar 

  15. Sampathkumaran E V, Das I, Rawat R and Majumdar S 2000 Appl. Phys. Lett. 77 418

    Article  CAS  Google Scholar 

  16. Peter S C, Sarkar S and Kanatzidis M G 2012 Inorg. Chem. 51 10793

    Article  CAS  Google Scholar 

  17. Sarkar S and Peter S C 2013 Inorg. Chem. 52 9741

    Article  CAS  Google Scholar 

  18. Cao C D, Klingeler R, Vinzelberg H, Leps N, Löser W, Behr G et al 2010 Phys. Rev. B 82 134446

    Article  Google Scholar 

  19. Gnida D, Szlawska M, Swatek P and Kaczorowski D 2016 J. Phys.: Condens. Matter 28 435602

    Google Scholar 

  20. Mallik R, Sampathkumaran E V, Strecker M and Wortmann G 1998 Europhys. Lett. 41 315

    Article  CAS  Google Scholar 

  21. Mallik R, Sampathkumaran E V, Paulose P L, Sugawara H and Sato H 1999 Physica B: Condens. Matter 259 892

    Article  Google Scholar 

  22. Mallik R, Sampathkumaran E V, Matsuda T D and Sato H 1999 Phys. Rev. B 60 12162

    Article  Google Scholar 

  23. Kotsanidis P A, Yakinthos J K and Gamari-Seale E 1990 J. Magn. Magn. Mater. 87 199

    Article  CAS  Google Scholar 

  24. Mallik R, Sampathkumaran E V, Strecker M, Wortmann G, Paulose P L and Ueda Y 1998 J. Magn. Magn. Mater. 185 135

    Article  Google Scholar 

  25. Mukherjee K, Basu T, Iyer K K and Sampathkumaran E V 2011 Phys. Rev. B 84 184415

    Article  Google Scholar 

  26. Danzenbächer S, Vyalikh D V, Kucherenko Y, Kade A, Laubschat C, Caroca-Canales N et al 2009 Phys. Rev. Lett. 102 14

    Article  Google Scholar 

  27. Frontzek M, Tang F, Link P, Schneidewind A, Hoffman J U, Mignot J M et al 2010 Phys. Rev. B 82 174401

    Article  Google Scholar 

  28. Kempter C P 1991 Phys. Rev. A 18 3161

    Google Scholar 

  29. Tang F, Frontzek M, Dshemuchadse J, Leisegang T, Zschornak M, Mietrach R et al 2011 Phys. Rev. B 84 104105

    Article  Google Scholar 

  30. Rodewald U C and Hoffmann R 2003 Z. Naturforsch 58b 971

    Article  Google Scholar 

  31. Smidman M, Ritter C, Adroja D T, Rayaprol S, Basu T, Sampathkumaran E V et al 2019 Phys. Rev. B 100 134423

    Article  CAS  Google Scholar 

  32. Giri S, Patra M and Majumdar S 2011 J. Phys.: Condens. Matter 23 073201

    CAS  Google Scholar 

  33. Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J et al 2017 Phys. Rev. B 96 064440

    Google Scholar 

Download references

Acknowledgements

We thank Jawaharlal Nehru Centre for Advanced Scientific Research, Sheikh Saqr Laboratory and Department of Science and Technology (DST), India, for financial support (Grant SB/FT/CS-07/2011). TP thanks DST for project fellowship (Grant SB/FT/Cs-07/2011), AKS thanks JNCASR for research fellowship and SR thanks UGC for research fellowship. SCP thanks DST for SwarnaJayanti Fellowship (DST/SJF/CSA-02/2017-18). We are grateful to Prof C N R Rao for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian C Peter.

Additional information

This article is part of the Topical Collection: SAMat Focus Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramanik, T., Singh, A.K., Roy, S. et al. Structure and physical properties of the solid solution Gd2–xNdxPdSi3 (x = 0, 0.75, 1, 2). Bull Mater Sci 43, 317 (2020). https://doi.org/10.1007/s12034-020-02148-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02148-w

Keywords

Navigation