Skip to main content
Log in

Interaction of modified nucleic bases with graphene and doped graphenes: a DFT study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In order to design biosensors, it is quite necessary to have an insight upon the nature of interaction between the modified nucleic bases (MNBs) and carbonaceous materials. This study is focussed upon the interaction of the various doped graphene models like graphene (GR), aluminium doped graphene (AlG), sulphur doped graphene (SG), nickel doped graphene (NiG), chromium doped graphene (CrG) and germanium doped graphene (GeG) with MNBs (caffeine, hypoxanthine, uric acid and xanthine) by employing the electronic structure calculations and the associated methodology. All the geometries considered in this study (MNBs and graphene models) were initially optimized at M06-2X/6-31+G** basis set without any constraints followed by the single point energy calculation at three different and well established methods using the Gaussian 09 software package. A detailed comparison of the interaction energy is accomplished in this study. The interaction energy values were further corrected for the basis set superposition error. The theory of atoms in molecules analysis is also performed in detail, which showcases the bond critical points, Laplacian and various other parameters of interest. The variation of frontier molecular orbitals, i.e., highest occupied molecular orbital–lowest unoccupied molecular orbital gap for different models of graphene have been discussed in detail upon the adsorption of MNBs. Among the doped graphene models, the graphene model doped with Cr seems to be more suitable for the application of sensors, also it is found that the MNBs interact primarily via \(\pi \)\(\pi \) interaction. The results highlight that the CrG can act as a sensor for the detection of MNBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Geim A K and Novoselov K S 2007 Nat. Mater. 183 1476

    Google Scholar 

  2. Geim A K 2009 Science 324 1530

    CAS  Google Scholar 

  3. Novoselov K S, Geim A K, Morozov S V, Zhang J D, Dubonos S V, Grigorieva I V et al 2004 Science 306 666

    CAS  Google Scholar 

  4. Latil S and Henrard L 2006 Phys. Rev. Lett. 97 036803

    Google Scholar 

  5. Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F et al 2008 Nano Lett. 8 902

    CAS  Google Scholar 

  6. Xuan Y, Wu Y Q, Shen T, Qi M, Capano M A, Cooper J A et al 2008 Appl. Phys. Lett. 92 013101

    Google Scholar 

  7. Yang X M, Tu Y F, Li L, Shang S and Tao X M 2010 ACS Appl. Mater. Interfaces 2 1707

    CAS  Google Scholar 

  8. Liu C, Alwarappan S, Chen Z F, Kong X X and Li C Z 2010 Biosens. Bioelectron. 25 1829

    CAS  Google Scholar 

  9. Stoller M D, Park S J, Zhu Y W, An J H and Ruoff R S 2008 Nano Lett. 8 3498

    CAS  Google Scholar 

  10. Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229

    CAS  Google Scholar 

  11. Lu C C, Lin Y C, Yeh C H, Huang J C and Chiu P W 2012 ACS Nano 6 4469

    CAS  Google Scholar 

  12. Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. Int. Ed. 48 4785

    CAS  Google Scholar 

  13. Qu L T, Liu Y, Baek J B and Dai L 2010 ACS Nano 4 1321

    CAS  Google Scholar 

  14. Liu Z, Robinson J T, Sun X M and Dai H J 2008 J. Am. Chem. Soc. 130 10876

    CAS  Google Scholar 

  15. Qin W, Li X, Bian W W, Fan X J and Qi J Y 2010 Biomaterials 31 1007

    CAS  Google Scholar 

  16. Rajesh C, Majumder C, Mizuseki H and Kawazoe Y 2009 J. Chem. Phys. 130 124911

    Google Scholar 

  17. Romero H E, Joshi P, Gupta A K, Gutierrez H R, Cole M W, Tadigadapa S A et al 2009 Nanotechnology 20 245501

    Google Scholar 

  18. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J et al 2008 J. Phys. Chem. C 112 13442

    CAS  Google Scholar 

  19. Leenaerts O, Partoens B and Peeters F 2008 Phys. Rev. B: Condens. Matter Mater. Phys. 77 125416

    Google Scholar 

  20. Lee J, Choi Y K, Kim H J, Scheicher R H and Cho J H 2013 J. Phys. Chem. C 117 13435

    CAS  Google Scholar 

  21. Umadevi D and Sastry G N 2011 J. Phys. Chem. Lett. 2 1572

    CAS  Google Scholar 

  22. Prasongkit J, Grigoriev A, Pathak B, Ahuja R and Scheicher R H 2013 J. Phys. Chem. C 117 15421

    CAS  Google Scholar 

  23. Maliyekkal S M, Sreeprasad T S, Krishnan D, Kouser S, Mishra A K, Waghmare U V et al 2012 Small 9 273

    Google Scholar 

  24. Balamurugan K and Subramanian V 2013 J. Phys. Chem. C 117 21217

    CAS  Google Scholar 

  25. Mohanty N and Berry V 2008 Nano Lett. 8 4469

    CAS  Google Scholar 

  26. Dai J, Yuan J and Giannozzi P 2009 Appl. Phys. Lett. 95 232105

    Google Scholar 

  27. Ao Z, Li S and Jiang Q 2010 Solid State Commun. 150 680

    CAS  Google Scholar 

  28. Kaniyoor A, Jafri R I, Arokiadoss T and Ramaprabhu S 2009 Nanoscale 1 382

    CAS  Google Scholar 

  29. Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L et al 2009 Nanotechnology 20 185504

    Google Scholar 

  30. Ao Z M, Yang J, Li S and Jiang Q 2008 Chem. Phys. Lett. 461 276

    CAS  Google Scholar 

  31. Ao Z M, Li S and Jiang Q 2009 Phys. Chem. Chem. Phys. 11 1683

    CAS  Google Scholar 

  32. Machado B F and Serp P 2012 Catal. Sci. Technol. 2 54

    CAS  Google Scholar 

  33. Pyun J 2011 Angew. Chem. Int. Ed. 50 46

    CAS  Google Scholar 

  34. Sundar J V and Subramanian V 2013 Org. Lett. 15 5920

    Google Scholar 

  35. Kumar A, Singh D, Kumar D and Kumar D 2018 Adv. Sci. Lett. 24 802

    Google Scholar 

  36. Zou Y, Li F, Zhu Z H, Zhao M W, Xu X G and Su X Y 2011 Eur. Phys. J. B 81 475

    CAS  Google Scholar 

  37. Junkaew A, Namuangruk S, Maitarad P and Ehara M 2018 RSC Adv. 8 22322

    CAS  Google Scholar 

  38. Chen Y, Liu Y J, Wang H X, Zhao J X, Cai Q H, Wang X Z et al 2013 ACS Appl. Mater. Interfaces 5 5994

    CAS  Google Scholar 

  39. Feng X M, Li R M, Ma Y W, Chen R F, Mei Q B, Fan Q L et al 2011 Sci. China: Chem. 54 1615

    CAS  Google Scholar 

  40. Jiang H, Zhang D and Wang R 2009 Nanotechnology 20 145501

    Google Scholar 

  41. Singh D, Kumar A and Kumar D 2017 Bull. Mater. Sci. 40 1263

    CAS  Google Scholar 

  42. Ao Z M, Jiang Q, Zhang R Q, Tan T T and Li S 2009 J. Appl. Phys. 105 074307

    Google Scholar 

  43. Chen L and Xu Z R 2016 RSC Adv. 6 56278

    CAS  Google Scholar 

  44. Denis P A 2014 ChemPhysChem 15 3994

    CAS  Google Scholar 

  45. Losurdo M, Yi C, Suvorova A, Rubanov S, Kim T H, Giangregorio M M et al 2014 ACS Nano 8 3031

    CAS  Google Scholar 

  46. Lv Y A, Zhuang G-L, Wang J-G, Jia Y-B and Xie Q 2011 Phys. Chem. Chem. Phys. 13 12472

    Google Scholar 

  47. Li S, Li Y, Cao J, Zhu J, Fan L and Li X 2014 Anal. Chem. 86 10201

    CAS  Google Scholar 

  48. Li X, Lau S P, Tang L, Ji R and Yang P 2014 RSC Nanoscale 6 5323

    CAS  Google Scholar 

  49. Yamamoto T, Moriwaki Y and Takahashi S 2005 Clin. Chim. Acta 356 35

    CAS  Google Scholar 

  50. Biaggioni I, Paul S, Puckett A and Arzubiaga C 1991 J. Pharmacol. Exp. Ther. 258 588

    CAS  Google Scholar 

  51. Kutzing M K and Firestein B L 2008 J. Pharmacol. Exp. Ther. 324 1

    CAS  Google Scholar 

  52. Turgan N, Boydak B, Habif S, Gülter C, Senol B, Mutaf I et al 1999 Int. J. Clin. Lab. Res. 29 162

    CAS  Google Scholar 

  53. Fellman V and Raivio K O 1997 Pediatr. Res. 41 599

    CAS  Google Scholar 

  54. Spataru N, Sarada B V, Tryk D A and Fujishima A 2002 Electroanalysis 14 721

    CAS  Google Scholar 

  55. Pizzariello A, Švorc J, Stred’ansky M and Miertuš S A 1999 J. Sci. Food Agric. 79 1136

    CAS  Google Scholar 

  56. Nihei H, Kanemitsu H, Tamura A, Oka H and Sano K 1989 Neurosurg. 25 613

    CAS  Google Scholar 

  57. Sumi S, Kidouchi K, Ohba S and Wada Y 1995 J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 670 376

    CAS  Google Scholar 

  58. Safranow K, Machoy Z and Ciechanowski K 2000 Anal. Biochem. 286 224

    CAS  Google Scholar 

  59. Shihabi Z K, Hinsdale M E and Bleyer A J 1995 J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 669 163

    CAS  Google Scholar 

  60. Wessela T, Lanversa C, Fruendb S and Hempel G 2000 J. Chromatogr. A 894 157

    Google Scholar 

  61. Mao L, Xu F, Xu Q and Jin L 2001 Anal. Biochem. 292 94

    CAS  Google Scholar 

  62. Carsol M A, Volpe G and Mascini M 1997 Talanta 44 2151

    CAS  Google Scholar 

  63. Wang Y and Tong L 2010 Sens. Actuators B 150 43

    CAS  Google Scholar 

  64. Yiting C, Bin Q, Yingyan J, Zhenyu L, Jianjun S, Lan Z et al 2009 Electrochem. Commun. 11 2093

    Google Scholar 

  65. Chaki N K and Vijayamohanan K 2002 Biosens. Bioelectron. 17 1

    CAS  Google Scholar 

  66. Wang J, Musameh M and Lin Y H 2003 J. Am. Chem. Soc. 125 2408

    CAS  Google Scholar 

  67. Kang X H, Wang J, Wu H, Aksay I A, Liu J and Lin Y H 2009 Biosens. Bioelectron. 25 901

    CAS  Google Scholar 

  68. Zhenhui W, Xiaoya D and Jing L 2008 Sens. Actuators B 131 411

    Google Scholar 

  69. Wang Y 2011 Colloids Surf. B 88 614

    CAS  Google Scholar 

  70. Khoo W Y H, Pumera M and Bonanni A 2013 Anal. Chim. Acta 804 97

    Google Scholar 

  71. Jun-Yong S, Huang K, Wei S Y, Wu Z W and Ren F P A 2011 Colloids Surf. B 84 421

    Google Scholar 

  72. Alwarappan S, Erdem A, Liu C and Li C Z 2009 J. Phys. Chem. C 113 8853

    CAS  Google Scholar 

  73. Raj M A and John S A 2013 Anal. Chim. Acta 771 14

    CAS  Google Scholar 

  74. Sidik R A and Anderson A B 2006 J. Phys. Chem. B 110 1787

    CAS  Google Scholar 

  75. Panigrahi S, Bhattacharya A, Banerjee S and Bhattacharyya D 2012 J. Phys. Chem. C 116 4374

    CAS  Google Scholar 

  76. Xiangkai K and Zhiyuan S 2012 Phys. Chem. Chem. Phys. 14 13564

    Google Scholar 

  77. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    CAS  Google Scholar 

  78. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, Revision A.02 (Wallingford CT: Gaussian Inc.)

  79. Popelier P L A 2000 Atoms in molecules: an introduction (New York: Prentice Hall) vol 1 p 1

  80. Bader R F W 1990 Atoms in molecules: a quantum theory (Oxford, UK: Clarendon Press)

    Google Scholar 

  81. Grabowski S J 2006 Hydrogen bonding–new Insights: challenges and advances in computational chemistry and physics (Dordrecht, The Netherlands: Springer vol 3)

    Google Scholar 

  82. Biegler-Konig F, Schonbohm J, Derdau R, Bayles D and Bader R F W 2000 AIM2000, Version 1; Bielefeld: Germany

    Google Scholar 

  83. Pearson R G 1989 J. Org. Chem. 54 1423

    CAS  Google Scholar 

  84. Parr R G and Pearson R G 1983 J. Am. Chem. Soc. 105 7512

    CAS  Google Scholar 

  85. Geerlings P, Proft F D and Langenaeker W 2003 Chem. Rev. 103 1793

    CAS  Google Scholar 

  86. Parr R G, Szentpaly L and Liu S 1999 J. Am. Chem. Soc. 121 1922

    CAS  Google Scholar 

  87. Chattaraj P K, Sarkar U and Roy D R 2006 Chem. Rev. 106 2065

    CAS  Google Scholar 

  88. Mudedla S K, Balamurugan K and Subramanian V 2014 J. Phys. Chem. C 118 16165

    CAS  Google Scholar 

Download references

Acknowledgements

AK would like to acknowledge the research discussion with DK and the financial support of University Grants Commission (UGC), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asheesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, D. Interaction of modified nucleic bases with graphene and doped graphenes: a DFT study. Bull Mater Sci 43, 205 (2020). https://doi.org/10.1007/s12034-020-02136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02136-0

Keywords

Navigation