Skip to main content

\(\hbox {Bi}_{(1-y)}\hbox {Sm}_{{y}}\hbox {FeO}_{{3}}\) as prospective photovoltaic materials

Abstract

The bandgap energy (\({E}_{\mathrm {g}}\)) of silicon-based photovoltaic (PV) cells is 1.1 eV, which limits its efficiency to 33.33%. Thus, the quest for alternative materials with maximum theoretical power conversion efficiencies (PCE) is growing in full swing within scientific community. Bismuth ferrite (BFO) is one of the promising candidates due to its tunable \({{E}}_{\mathrm {g}}\). For visible light with wavelength from 380 to 750 nm, \({{E}}_{\mathrm {g}}\) falls within the range of 1.65–3.1 eV. The photons with wavelengths of higher than 464 nm (\({{E}}_{\mathrm {g }}= 2.67\) eV) constitute 80% of the solar spectrum, which cannot be absorbed by un-doped BFO. Thus, lowering the \({{E}}_{\mathrm {g}}\) of BFO is a promising way to obtain higher PCE of PV cells to harvest a wide range of visible light spectrum. In this context, we have synthesized samarium (Sm)-doped \(\hbox {Bi}_{{(1-y)}}{\mathrm {Sm}}_{y} {\mathrm {FeO}}_{{3}}\) (\({y} = 0.05\), 0.1 and 0.15) multiferroic nanoparticles using sol–gel method. The evolution of phase from xerogel was thoroughly investigated by differential scanning calorimetry and a noticeable peak shift of \(7^{\circ }\hbox {C}\) was observed due to Sm doping compared to un-doped counterpart. For crystallinity, xerogel powder was annealed at \(600^{\circ }\hbox {C}\). Rietveld refinement of X-ray diffraction data have confirmed rhombohedral crystal structure (R3c) of annealed samples and a substantial reduction of crystal size from 57.4 to 16 nm. For the first time, a total suppression of secondary phase was obtained in \(\hbox {Bi}_{{99.05}}{\mathrm {Sm}}_{{0.05}} {\mathrm {FeO}}_{{3}}\) with only 5 (at.)% Sm addition. Fe–O–Fe bond angle was found to change significantly from 154.77 to \(158.84^\circ \) and Fe–O bond length was found to be decreased along long axis and increased along short axis in Sm-doped samples. Field emission scanning electron microscopy demonstrated a reduction in particle size from 164 to 88 nm with increasing Sm-dopant concentration. The bandgap energy of un-doped and Sm-doped \(\hbox {BiFeO}_{{3}}\) was calculated from measured diffused reflectance data using UV–Vis–NIR spectroscopy, the result has shown a reduction of bandgap in Sm-doped \(\hbox {BiFeO}_{{3}}\) to 1.9 eV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Miller O D, Yablonovitch E and Kurtz S R 2012 IEEE J. Photovolt. 2 303

    Google Scholar 

  2. O’Regan B and Grtzel M 1991 Lett. Nat. 353 737

    Google Scholar 

  3. Ginley D, Green M A and Collins R 2008 MRS Bull. 33 355

    Google Scholar 

  4. Gur I, Fromer N A, Geier M L and Alivisatos A P 2005 Science 310 462

    CAS  Google Scholar 

  5. Yi H T, Choi T, Choi S G, Oh Y S and Cheong S 2011 Adv. Mater. 23 3403

    Google Scholar 

  6. Hauser A J, Zhang J, Miera L, Ricciardo R, Woodward P M and Gustafson T L 2008 Appl. Phys. Lett. 92 222901

    Google Scholar 

  7. Wu Y J, Chen K X, Zhang J and Chen J X 2012 J. Magn. Magn. Mater. 324 1348

    CAS  Google Scholar 

  8. Khomchenko V, Shvartsman V, Borisov P, Kleemann W, Kiselev D, Bdikin I et al 2009 Acta Mater. 57 5137

    CAS  Google Scholar 

  9. Belik A A, Rusakov D A, Furubayashi T and Muromachi E T 2012 Chem. Mater. 24 3056

    CAS  Google Scholar 

  10. Kaczkowski J, Pugaczowa-Michalska M and Jezierski A 2015 Acta Phys. Pol. A 127 266

    Google Scholar 

  11. Bai Y, Chen J, Wu X and Zhao S 2016 J. Phys. Chem. C 120 24637

    Google Scholar 

  12. Han Y L, Liu W F, Wu P, Xu X L, Guo M C, Rao G H et al 2016 J. Alloy Compd. 115 661

    Google Scholar 

  13. Anthonyraj C, Muneeswaran M, Raj S G, Giridharan N V, Sivakumar V and Senguttuvan G 2015 J. Mater. Sci.: Mater. Electron. 26 49

    Google Scholar 

  14. Peng L, Deng H, Tian J, Ren Q, Peng C, Huang Z et al 2013 Appl. Surf. Sci. 268 146

    CAS  Google Scholar 

  15. Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Islam M F et al 2016 J. Alloy Compd. 687 701

    CAS  Google Scholar 

  16. Irfan S, Shen Y, Rizwan S, Wang H C, Khan S B and Nan C W 2016 J. Am. Chem. Soc. 100 31

    Google Scholar 

  17. Vishwakarma A K, Tripathi P, Srivastava A, Sinha A S K and Srivastava O N 2017 Int. Hydrogen Energy 42 22677

    Google Scholar 

  18. Zhou W, Deng H, Cao H, He J, Liu J, Yang P et al 2015 Mater. Lett. 144 93

    CAS  Google Scholar 

  19. Shu H, Ma Y, Wang Z, Mao W, Chu L, Yang J et al 2017 J. Supercond. Nov. Magn. 30 3027

    CAS  Google Scholar 

  20. Vanga P R, Mangalaraja R V and Ashok M 2015 Mater. Res. Bull. 72 299

    CAS  Google Scholar 

  21. Rhaman M M, Matin M A, Hossain M N, Mozahid F A, Hakim M A, Rizvi M H et al 2018 J. Electron. Mater. 47 6954

    Google Scholar 

  22. Rodrguez-Carvajal J, Hennion M, Moussa F, Moudden A H, Pinsard L and Revcolevschi A 1998 Phys. Rev. B 57 3189

    Google Scholar 

  23. Gao N, Chen W, Zhang R, Zhang J, Wu Z and Mao W et al 2016 Comput. Theor. Chem. 1084 36

    CAS  Google Scholar 

  24. Lin H, Huang C P, Li W, Ni C, Shah S I and Tseng Y H 2006 Appl. Catal. B 68 1

    CAS  Google Scholar 

  25. Xu J H, Ke D, Jia C, Wang W and Zhou Y 2009 J. Alloy Compd. 472 473

    CAS  Google Scholar 

  26. Ghosh S, Dasgupta S, Sen A and Maiti H S 2005 J. Am. Ceram. Soc. 88 1349

    CAS  Google Scholar 

  27. Silva J, Reyes A, Esparza H, Camacho H and Fuentes L 2011 Integr. Ferroelectr. 126 47

    CAS  Google Scholar 

  28. Layek S and Verma H C 2012 Adv. Mater. Lett. 6 533

    Google Scholar 

  29. Jiang Q H and Nan C W 2006 J. Am. Ceram. Soc. 89 2123

    Google Scholar 

  30. Munoz T, Rivera J P, Monnier A and Schmid H 1985 Jpn. J. Appl. Phys. Part 14 1051

    Google Scholar 

  31. Kumar M and Yadav K L 2006 J. Appl. Phys. 100 074111

    Google Scholar 

  32. Hasan M, Islam M F, Mahbub R, Hossain M S and Hakim M A 2016 MRS Bull. 73 179

    Google Scholar 

  33. Sagdeo A, Mondal P, Upadhyay A, Sinha A K, Srivastava A K, Gupta S M et al 2013 Solid State Sci. 18 1

  34. Valant M, Axelsson A K and Alford N 2007 Chem. Mater. 19 5431

    CAS  Google Scholar 

  35. Lu J, Qiao L J, Fu P Z and Wu Y C 2011 J. Cryst. Growth 318 936

    Google Scholar 

  36. Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M and Liu Z G 2004 Appl. Phys. Lett. 84 1731

    CAS  Google Scholar 

  37. Smith R T, Achenbach G D, Gerson R and James W J 1968 J. Appl. Phys. 39 70

    Google Scholar 

  38. Kumar M M, Srinivas A and Suryanarayana S V 2000 J. Appl. Phys. 87 855

    CAS  Google Scholar 

  39. Quionez J L O, Daz D, Dub I Z, Santamara H A, Betancourt I, Jacinto P S et al 2013 Inorg. Chem. 52 10306

    Google Scholar 

  40. Matin M A, Hossain M N, Rizvi M H, Zubair M A, Hakim M A, Hussain A et al 2017 EPTC Conf. Proc. 1

  41. Tomar R, Wadehra N, Gaikwad V M and Chakraverty S 2018 AIP Adv. 8 085306

    Google Scholar 

  42. Lotey G S and Verma N K 2012 J. Nanopart. Res. 14 742

    Google Scholar 

  43. Mohagheghi M M B, Shahtahmasebi N, Alinejad M R, Youssefi A and Shokooh-Saremi M 2008 Physica B 403 2431

    Google Scholar 

  44. Mocherla P S, Karthik C, Ubic R, Rao M S R and Sudakar C 2013 Appl. Phys. Lett. 103 022910

    Google Scholar 

  45. Sati P C, Arora M, Chauhan S, Kumarn M and Chhoker S 2014 J. Phys. Chem. Solids 75 105

    Google Scholar 

  46. Selbach S M, Tybell T, Einarsrud M A and Grande T 2007 Chem. Mater. 19 6478

    Google Scholar 

  47. Medarde M, Mesot J, Lacorre P, Rosenkranz S, Fischer P and Gobrecht K 1995 Phys. Rev. B 52 9248

    Google Scholar 

  48. Tutuncu H M and Srivastava G P 2008 Phys. Rev. B 78 235209

    Google Scholar 

Download references

Acknowledgements

We highly acknowledge the support given by the Department of Glass and Ceramic Engineering (GCE), BUET, while pursuing this research. We are highly indebted to the reviewers for constructive feedbacks to substantially improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Matin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matin, M.A., Rhaman, M.M., Hakim, M.A. et al. \(\hbox {Bi}_{(1-y)}\hbox {Sm}_{{y}}\hbox {FeO}_{{3}}\) as prospective photovoltaic materials. Bull Mater Sci 43, 167 (2020). https://doi.org/10.1007/s12034-020-02118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02118-2

Keywords

  • Bandgap
  • impurity phases
  • multiferroic
  • nanoparticles
  • sol–gel