Skip to main content

Advertisement

Log in

Time-resolved fluorescence decay and Gaussian analysis of P3HT-derived \(\hbox {Ho}^{3+}\)- and \(\hbox {Tm}^{3+}\)-doped ZnO nanostructures

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The fluorescence vibrational features of as-synthesized P3HT–ZnO:\(\hbox {Ho}^{3+}\) and P3HT–ZnO:\(\hbox {Tm}^{3+}\) thin films were investigated using Gaussian analysis. Relative to P3HT–ZnO:\(\hbox {Tm}^{3+}\) film, detailed Gaussian analysis of the fluorescence spectra revealed weaker intensity exhibited in P3HT–ZnO:\(\hbox {Ho}^{3+}\) film due to better charge transfer. Moreover, we comparatively present the Huang–Rhys factor and relaxation energy of the samples, which are calculated using relations derived from the Franck–Condon theory. Furthermore, P3HT–ZnO:\(\hbox {Ho}^{3+}\) film exhibits lower relaxation energy as compared with P3HT–ZnO:\(\hbox {Tm}^{3+}\) film, which implies better conjugation length. Finally, the singlet exciton lifetime of P3HT–ZnO:\(\hbox {Ho}^{3+}\) sample was found to be shorter as compared with P3HT–ZnO:\(\hbox {Tm}^{3+}\), while the calculated exciton diffusion length was 6.4 and 10.3 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Thompson N J, Wilson M W B, Congreve D N, Brown P R, Scherer J M, Bischof T S et al 2014 Nat. Mater.13 1039

    Article  CAS  Google Scholar 

  2. Tabachnyk M, Ehrler B, Gélinas S, Böhm M L, Walker B J, Musselman K P et al 2014 Nat. Mater.13 1033

    Article  CAS  Google Scholar 

  3. Ntwaeaborwa O M, Zhou R, Qian L, Pitale S S, Xue J, Swart H C et al 2012 Phys. B: Condens. Matter Phys.407 1631

    Article  CAS  Google Scholar 

  4. Mbule P S, Kim T H, Kim B S, Swart H C and Ntwaeaborwa O M 2013 Sol. Energy Mater. Sol. Cells112 6

    Article  CAS  Google Scholar 

  5. Malgas G F, Motaung D E, Mhlongo G H, Nkosi S S, Mwakikunga B W, Govender M et al 2014 Thin Solid Films555 100

    Article  CAS  Google Scholar 

  6. Spano F C and Silva C 2014 Annu. Rev. Phys. Chem.65 477

    Article  CAS  Google Scholar 

  7. Paquin F 2014 PhD thesis (Canada: Université de Montréal)

  8. Kabongo G L, Mbule P S, Mhlongo G H, Mothudi B M, Hillie K T and Dhlamini M S 2016 Nanoscale Res. Lett.11 418

    Article  Google Scholar 

  9. Spano F C 2005 J. Chem. Phys.122 234701; Erratum 2007 J. Chem. Phys.126 159901

  10. Clark J, Silva C, Friend R H and Spano F C 2007 Phys. Rev. Lett.98 206406

    Article  Google Scholar 

  11. Paquin F, Yamagata H, Hestand N J, Sakowicz M, Berube N, Côté M et al 2013 Phys. Rev. B88 155202

    Article  Google Scholar 

  12. Spano F C, Clark J, Silva C and Friend R H 2009 J. Chem. Phys.130 074904

    Article  Google Scholar 

  13. Saidani M A, Benfredj A, Ben Hamed Z, Romdhane S, Ulbricht C, Egbe D A M et al 2013 Synth. Met.184 83

    Article  CAS  Google Scholar 

  14. Saidani M A, Benfredj A, Romdhane S, Kouki F and Bouchriha H 2012 Phys. Rev. B86 165315

    Article  Google Scholar 

  15. Ben Hamed Z, Mastour N, Ben chaabane A, Kouki F, Sanhoury M A and Bouchriha H 2016 J. Lum.170 30

    Article  Google Scholar 

  16. Li N, Shi T, Ye C, Zeng X, Li X, Zhao Y et al 2014 Europhys. Lett.107 28007

    Article  Google Scholar 

  17. Wang C H, Chen C W, Chen Y T, Chen C T, Chen Y F, Chou S W et al 2011 Nanotechnology22 065202

    Article  Google Scholar 

  18. Motaung D E, Malgas G F, Arendse C J, Mavundla S E and Knoesen D 2009 Mater. Chem. Phys.116 279

    Article  CAS  Google Scholar 

  19. Brown P J, Thomas D S, Kohler A, Wilson J S and Kim J S 2003 Phys. Rev. B67 064203

    Article  Google Scholar 

  20. Bansal N, Reynolds L X, MacLachlan A, Lutz T, Ashraf R S, Zhang W et al 2013 Sci. Rep.3 1531

    Article  Google Scholar 

  21. Bakulin A A, Rao A, Pavelyev V G, Van Loosdrecht P H M, Pshenichnikov M S, Niedzialek D et al 2012 Science335 1340

    Article  CAS  Google Scholar 

  22. Lian H, Hou Z, Shang M, Geng D, Zhang Y and Lin J 2013 Energy57 270

    Article  CAS  Google Scholar 

  23. Barone V, Bloino J and Biczysko M 2009 Vibrationally-resolved electronic spectra in Gaussian 09 Gaussian 09, Revision A.02, http://dreamslab.sns.it [accessed, 06 January 2016]

  24. Kabongo G L, Mhlongo G H, Mothudi B M, Mbule P S, Hillie K T and Dhlamini M S 2017 J. Lum. 187 141

    Article  CAS  Google Scholar 

  25. Franck J 1926 Trans. Faraday Soc.21 536

    Article  Google Scholar 

  26. Condon E 1928 Phys. Rev.32 858

    Article  CAS  Google Scholar 

  27. Shaw P E, Ruseckas A and Samuel I D W 2008 Adv. Mater.20 3516

    Article  CAS  Google Scholar 

  28. Chawla P, Singh S and Sharma S N 2014 Beilstein J. Nanotechnol.5 1235

    Article  Google Scholar 

  29. McGehee M D and Goh C 2008 AIP Conf. Proc.1044 322

    Article  CAS  Google Scholar 

  30. Bünzli J C G and Eliseeva S V 2010 in Lanthanide luminescence: photophysical, analytical and biological aspects, P Hanninen and H Harma (eds) Springer Series on Fluorescence, https://doi.org/10.1007/4243_2010_3

  31. Yanga K, Kumara J, Leeb D, Sandman D J and Tripathy S K 2002 Opt. Commun.201 197

    Article  Google Scholar 

  32. Yu J, Hu D and Barbara P F 2000 Science289 1327

    Article  CAS  Google Scholar 

  33. Hu D, Yu J, Wong K, Bagchi B, Rossky P J and Barbara P F 2000 Nature405 1030

    Article  CAS  Google Scholar 

  34. Grey J K, Kim D Y, Donley C L, Miller W L, Kim J S, Silva C et al 2006 J. Phys. Chem. B110 18898

    Article  CAS  Google Scholar 

  35. Shao M, Keum J, Chen J, He Y, Chen W, Browning J F et al 2014 Nat. Commun.5 4180

    Article  Google Scholar 

  36. Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries E L M, Petrich J W et al 2007 J. Am. Chem. Soc.129 12828

    Article  CAS  Google Scholar 

  37. Chasteen S V, Carter S A and Rumbles G 2005 Proc. SPIE5938 59380J

    Article  Google Scholar 

  38. Li Y, Lu P, Jiang M, Dhakal R, Thapaliya P, Peng Z G et al 2012 J. Phys. Chem. C116 25248

    Article  CAS  Google Scholar 

  39. Sun B, Snaith H J, Dhoot A S, Westenhoff S Q and Greenham N C 2005 J. Appl. Phys.97 014914

    Article  Google Scholar 

  40. Goutam P J, Singh D K and Iyer P K 2012 J. Phys. Chem. C116 8196

    Article  CAS  Google Scholar 

  41. Markov D E, Amsterdam E, Blom P W M, Sieval A B and Hummelen J C 2005 J. Phys. Chem. A109 5266

    Article  CAS  Google Scholar 

  42. Zheng F, Xu W L, Jin H D, Hao X T and Ghiggino K P 2015 RSC Adv.5 89515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of South Africa (UNISA) and National Research Foundation (NRF) (Grant# 88028) for their valuable support. They also acknowledge the financial support received from the Council for Scientific and Industrial Research (CSIR) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Dhlamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabongo, G.L., Mbule, P.S., Mhlongo, G.H. et al. Time-resolved fluorescence decay and Gaussian analysis of P3HT-derived \(\hbox {Ho}^{3+}\)- and \(\hbox {Tm}^{3+}\)-doped ZnO nanostructures. Bull Mater Sci 43, 48 (2020). https://doi.org/10.1007/s12034-019-2020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2020-0

Keywords

Navigation