Skip to main content
Log in

First-principles computations of \(\hbox {Y}_{x}\hbox {Ga}_{1-{x}}\)As-ternary alloys: a study on structural, electronic, optical and elastic properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the first-principles computational study on the structural, elastic, electronic and optical properties of \(\hbox {Y}_{x}\hbox {Ga}_{1-{x}}\)As as a function of yttrium concentration (x) is presented. The computations are performed using the full-potential linearized augmented plane wave plus local orbital method designed within density functional theory. Firstly, we performed our calculations on the most stable phases, NaCl and zinc blende, then their transition pressure for each concentration is determined and analysed. Our computed results for the zero yttrium concentration are found consistent with the available experimental measurements as well as with theoretical predictions. Moreover, the dependencies of these parameters upon yttrium concentration (x) were found to be non-linear. We also report computed results on electronic-band structure, electronic energy band gap results and density of states. A systematic study on optical properties to analyse its optoelectronic character and elastic properties is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang Z, Qian L, Fan D and Deng X 1992 Appl. Phys. Lett. 60 150

    Google Scholar 

  2. Kajava T T and Gaeta A L 1996 Opt. Lett. 21 1244

    CAS  Google Scholar 

  3. Gu J, Zhou F, Wan K T, Lim T K, Tam S C, Lam Y L et al 2001 Opt. Lasers Eng. 35 299

    Google Scholar 

  4. Gu J, Zhou F, Xie W, Tam S C and Lam Y L 1999 Opt. Commun. 16 5245

    Google Scholar 

  5. Talwar D N 2006 J. Appl. Phys. 99 123505

    Google Scholar 

  6. Passlack M, Medendorp N, Gregory R and Braddock D 2003 Appl. Phys. Lett. 83 5262

    CAS  Google Scholar 

  7. Passlack M, Hong M, Mannaerts J P, Opila R L, Chu S N G, Moriya N et al 1997 IEEE Trans. Electron Devices 44 214

    CAS  Google Scholar 

  8. Kim H S, Ok I, Zhang M and Zhu F 2008 Appl. Phys. Lett. 93 062111

    Google Scholar 

  9. Rosenberg J J, Benlamri M, Kirchner P D, Woodall J M and Pettit G D 1985 IEEE Electron Device Lett. (EDL) 6 491

    Google Scholar 

  10. Geppert T, Wagner J, Kohler K, Ganser P and Maier M 2002 Appl. Phys. Lett. 80 2081

    CAS  Google Scholar 

  11. Geisz J F, Friedman D J, Olson J M, Sarah Kurtz R, Reedy R C, Swartzlander A B et al 2000 Appl. Phys. Lett. 76 1443

    CAS  Google Scholar 

  12. Leibiger G, Krahmer C, Bauer J, Herrnberger H and Gottschalch V 2004 J. Cryst. Growth 272 732

    CAS  Google Scholar 

  13. Rodriguez P, Auvray L, Dumont H, Dazord J and Monteil Y 2007 J. Cryst. Growth 298 81

    CAS  Google Scholar 

  14. Wang Q, Ren X, Huang H, Huang Y and Cai S 2009 Microelectron. J. 40 87

    CAS  Google Scholar 

  15. Wang Q, Ren X, Wang F, Feng J, Lv J, Zhou J et al 2008 Microelectron. J. 391 678

    Google Scholar 

  16. Saidi F, Hamila R, Maaref H, Rodriguez P, Auvray L and Monteil Y 2010 J. Cryst. Growth 491 45

    CAS  Google Scholar 

  17. Cui S, Feng W, Hu H, Feng Z and Liu H 2009 Solid State Commun. 149 996

    CAS  Google Scholar 

  18. Amrani B and El Haj Hassan F 2007 Comput. Mater. Sci. 39 563

    CAS  Google Scholar 

  19. Hayashi J, Shirotani I, Hirano K, Ishimatsu N, Shimomura O and Kikegawa T 2003 Solid State Commun. 125 543

    CAS  Google Scholar 

  20. Takeuchi N 2002 Phys. Rev. B 66 153405

    Google Scholar 

  21. Stampfl C, Mannstadt W, Asahi R and Freeman A J 2001 Phys. Rev. B 63 155106

    Google Scholar 

  22. De La Cruz W, Díaz J A, Mancera L, Takeuchi N and Soto G 2003 J. Phys. Chem. Solids 64 2273

    Google Scholar 

  23. Amrane N 2009 Mater. Chem. Phys. 114 283

    CAS  Google Scholar 

  24. Bouhemadou A 2008 Comput. Mater. Sci. 43 1112

    CAS  Google Scholar 

  25. Bouhemadou A and Khenata R 2007 Phys. Lett. A 362 476

    CAS  Google Scholar 

  26. Rodriguez-Hernandez P and Munoz A 2005 Int. J. Quantum Chem. 101 770

    CAS  Google Scholar 

  27. Chen Z J, Xiao H Y and Zu X T 2007 Solid State Commun. 141 359

    CAS  Google Scholar 

  28. Singh D 1994 Planes waves, pseudo-potentials and the LAPW method (Boston, Dordrecht, London: Kluwer Academic Publishers)

  29. Blaha P, Schwarz K, Madsen G K H, Hvasnicka D and Luitz J 2001 WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties (Austria: Vienna University of Technology)

    Google Scholar 

  30. Wu Z and Cohen R E 2006 Phys. Rev. B 73 235

    Google Scholar 

  31. Engel E and Vosko S H 1993 Phys. Rev. B 47 13164

    CAS  Google Scholar 

  32. Tran F, Laskowski R, Blaha P and Schwarz K 2007 Phys. Rev. B 75 115

    Google Scholar 

  33. Adachi S 1992 Physical properties of III–V semiconductor compounds (New York: Wiley)

    Google Scholar 

  34. Rosencher E and Vinter B 2004 Optoelectronics English Edition (United Kingdom: Cambridge University Press)

    Google Scholar 

  35. Merabet B, Abid H and Sekkal N 2011 Physica B 406 930

    CAS  Google Scholar 

  36. Soyalp F and Ugur S 2008 Phys. J. Chem. Solids 69 791

    CAS  Google Scholar 

  37. Adachi S 1999 Optical constants of crystalline and amorphous semiconductors (Boston: Kluwer Academic)

    Google Scholar 

  38. Juan Y and Kaxiras E 1993 Phys. Rev. B 48 14944

    CAS  Google Scholar 

  39. Cohen M L 1985 Phys. Rev. B 32 7988

    CAS  Google Scholar 

  40. Hayashi J, Shirotani I, Hirano K, Ishimatsu N, Shimomura O and Kikegawa T 2003 Solid State Commun. 125 543

    CAS  Google Scholar 

  41. Singh A, Shrivastava V, Anayas M and Sanyal S P 2009 Physica B 404 1852

    CAS  Google Scholar 

  42. Christensen N E 1998 in High pressure in semiconductor physics I T Suski and W Paul (eds) (New York: Academic Press) p 577

  43. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 244 30

    Google Scholar 

  44. Vegard L 1921 Z. Phys. 5 17

    CAS  Google Scholar 

  45. Wettling W and Windscheif J 1984 Solid State Commun. 50 33

    CAS  Google Scholar 

  46. El Haj Hassan F, Postnikov A V and Pagès O 2010 J. Alloys Compd. 504 559

    Google Scholar 

  47. Azzi S, Zaoui A and Ferhat M 2013 Phys. Scr. 88 055601

    CAS  Google Scholar 

  48. Draxl C A and Abt R 1998 ICTP lecture notes, unpublished

  49. Adachi S 1992 Physical properties of III–V semiconductor compounds (New York: Wiley)

    Google Scholar 

  50. Yu P Y and Cardona M 1999 Fundamentals of semiconductors, physics and materials properties (Berlin: Springer) p 233

  51. Delin A, Eriksson A O, Ahuja R, Johansson B, Brooks M S, Gasche T et al 1996 Phys. Rev. B 54 1673

    CAS  Google Scholar 

  52. Yu L, Li D, Zhao S, Li G and Yang K 2012 Materials 52 486

    Google Scholar 

  53. Chimot N, Even J, Folliot H and Loualiche S 2005 Physica B 364 263

    CAS  Google Scholar 

  54. Moore W J and Holm R T 1996 J. Appl. Phys. 80 6939

    CAS  Google Scholar 

  55. Yan Y, Wang Q, Shu W, Jia Z, Ren X, Zhang X et al 2012 Physica B 407 4570

    CAS  Google Scholar 

  56. Dadsetani M and Pourghazi A 2006 Phys. Rev. B 73 195102

    Google Scholar 

  57. Marton L 1956 Rev. Mod. Phys. 28 172

    CAS  Google Scholar 

  58. Mayer B, Anton H, Bott E, Methfessel M, Sticht J and Schmidt P C 2003 Intermetallics 11 23

    CAS  Google Scholar 

  59. Lofland S E, Hettinger J D, Bryan A, Finkel P, Gupta S, Barsoum M W et al 2006 Phys. Rev. B 74 174501

    Google Scholar 

  60. Ding Y C, Chen M, Gao X Y and Jiang M H 2012 Chin. Phys. B 25 21067101

    Google Scholar 

  61. Xu X W, Hu L, Yu X, Lu Z M, Fan Y, Li Y X et al 2011 Chin. Phys. B 20 126201

    Google Scholar 

  62. Havva B O, Kemal C, Engin D and Haci O 2012 Chin. Phys. B 21 047101

    Google Scholar 

  63. Harrison W A 1989 Electronic structure and properties of solids (New York: Dover)

    Google Scholar 

  64. Barsoum M W, El-Raghi T, Porter W D, Wang H and Chakraborty S 2000 J. Appl. Phys. 88 6313

    CAS  Google Scholar 

  65. Blakemore J S 1982 J. Appl. Phys. 53 R123

    CAS  Google Scholar 

  66. Güler E and Güler M 2014 Mater. Res. 17 1268

    Google Scholar 

  67. Varshney D, Joshi G, Varshney M and Shriya S 2010 J. Alloys Compd. 495 23

    CAS  Google Scholar 

  68. Bhardwaj P and Singh S 2011 Mater. Chem. Phys. 125 440

    CAS  Google Scholar 

  69. Sze S M 1994 Semiconductor sensors (New York: Wiley)

    Google Scholar 

  70. Han P and Bester G 2011 Phys. Rev. B 83 174304

    Google Scholar 

  71. Born M and Huang K 1998 Dynamical theory of crystal lattices (Oxford: Oxford University Press)

    Google Scholar 

  72. Belghit R, Belkhir H, Kadri M T, Heciri D, Bououdina M and Ahuja R 2018 Physica B 545 18

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Meradji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touam, S., Belghit, R., Mahdjoubi, R. et al. First-principles computations of \(\hbox {Y}_{x}\hbox {Ga}_{1-{x}}\)As-ternary alloys: a study on structural, electronic, optical and elastic properties. Bull Mater Sci 43, 22 (2020). https://doi.org/10.1007/s12034-019-1978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1978-y

Keywords

Navigation