Skip to main content

Advertisement

Log in

A mesoporous nickel oxide nanosheet as an electrode material for supercapacitor application using the 1-(\(2^{\prime }\),\(3^{\prime }\)-dihydroxypropyl)-3-methylimidazolium hydroxide ionic liquid electrolyte

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

NiO nanosheets were deposited on the surface of a stainless steel substrate by using a facile, environmentally friendly, reflux deposition approach for supercapacitor (SC) applications. X-ray diffraction patterns and field emission scanning electron microscopy images revealed the formation of a face centred cubic crystal structure with a uniform, compact, smoothly ordered nanosheet like structure. This study focuses on the electrochemical supercapacitive properties of NiO nanosheets with respect to cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy techniques in a 1-(\(2^{\prime }{,}3^{\prime }\)-dihydroxypropyl)-3-methylimidazolium hydroxide [DHPMIM][OH] ionic liquid (IL) as an electrolyte. The electrochemical study revealed that NiO (0.3 M) showed a high-specific capacitance of \(\hbox {205.5 F g}^{-1}\) and an excellent cycling stability (80% specific capacitance retention after 5000 cycles) in the [DHPMIM][OH] IL electrolyte. Thus, the result showed that NiO nanosheets act as an active electrode material hold for SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang H, Wang Y and Wang X 2012 Electrochem. Commun. 18 92

    Article  CAS  Google Scholar 

  2. Wu C H, Deng S X, Wang H, Sun Y X, Liu J B and Yan H 2014 ACS Appl. Mater. Interfaces 6 1106

    Article  CAS  Google Scholar 

  3. Purushothaman K, Babu I, Sethuraman B and Muralidharan G 2013 ACS Appl. Mater. Interfaces 5 10767

    Article  CAS  Google Scholar 

  4. Vadiyar M M, Bhise S C, Kolekar S S, Chang J Y, Ghule K S and Ghule A V 2016 J. Mater. Chem. A 4 3504

    Article  CAS  Google Scholar 

  5. Han B, Lee E, Kim J and Bang J 2015 New J. Chem. 39 1996

    Article  CAS  Google Scholar 

  6. Wu Q, Liu Y and Hu Z 2013 J. Solid State Electrochem. 17 1711

    Article  CAS  Google Scholar 

  7. Kim J Y, Kim K H, Kim H K, Park S H, Chung K Y and Kim K B 2014 RSC Adv. 4 16115

    Article  CAS  Google Scholar 

  8. Chen P, Chen H, Qiu J and Zhou C 2010 Nano Res. 3 594

    Article  CAS  Google Scholar 

  9. Yin B, Zhang S, Jiang H, Qu F and Wu X 2015 J. Mater. Chem. A 3 5722

    Article  CAS  Google Scholar 

  10. Vadiyar M, Bhise S, Patil S, Patil S, Pawar D, Ghule A et al 2015 RSC Adv. 5 45935

    Article  CAS  Google Scholar 

  11. Sun X, Wang G, Hwang J Y and Lian J 2011 J. Mater. Chem. 21 16581

    Article  CAS  Google Scholar 

  12. Dam D and Lee J 2014 ACS Appl. Mater. Interfaces 6 20729

    Article  CAS  Google Scholar 

  13. Tang Y, Liu Y, Yu S, Zhao Y, Mu S and Gao F 2014 Electrochim. Acta 123 158

    Article  CAS  Google Scholar 

  14. Deng M, Song C, Wang C, Tseng Y, Chen J and Lu K 2015 ACS Appl. Mater. Interfaces 7 9147

    Article  CAS  Google Scholar 

  15. Vadiyar M, Kolekar S, Chang J, Kashale A and Ghule A 2016 Electrochim. Acta 222 1604

    Article  CAS  Google Scholar 

  16. Xiao A, Zhou S, Zuo C, Zhuan Y and Ding X 2015 Mater. Res. Bull. 70 200

    Article  CAS  Google Scholar 

  17. Qiao Y, Wu X S and Li C M 2014 J. Power Sources 266 226

    Article  CAS  Google Scholar 

  18. Huang M, Li F, Ji J Y, Zhang Y X, Zhao X L and Gao X 2014 CrystEngComm 16 2878

    Article  CAS  Google Scholar 

  19. Singh A, Sarkar D, Khan G G and Mandal K 2014 ACS Appl. Mater. Interfaces 6 4684

    Article  CAS  Google Scholar 

  20. Inamdar A I, Kim Y, Pawar S M, Kim J H, Im H and Kim H 2011 J. Power Sources 196 2393

    Article  CAS  Google Scholar 

  21. Xu J, Gao L, Cao J, Wang W and Chen Z 2011 J. Solid State Electrochem. 15 2005

    Article  CAS  Google Scholar 

  22. Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S et al 2010 Nano Res. 3 643

    Article  CAS  Google Scholar 

  23. Xiong S, Yuan C, Zhang X and Qian Y 2011 CrystEngComm 13 626

    Article  CAS  Google Scholar 

  24. Tian X, Cheng C, Qian L, Zheng B, Yuan H, Xie S et al 2012 J. Mater. Chem. 22 8029

    Article  CAS  Google Scholar 

  25. Li B, Liu W, Zhao X G, Gong W J, Feng J N and Zhang Z D 2014 J. Magn. Magn. Mater. 350 35

    Article  CAS  Google Scholar 

  26. Zhai P, Yi Q, Jian J, Wang H, Song P, Dong C et al 2014 Chem. Commun. 50 1854

    Article  CAS  Google Scholar 

  27. Dalavi D, Devan R, Patil R, Ma Y, Kang M, Kim J et al 2013 J. Mater. Chem. A 1 1035

    Article  CAS  Google Scholar 

  28. Yu T, Cheng X, Zhang X, Sui L, Xu Y, Gao S et al 2015 J. Mater. Chem. A 3 11991

    Article  CAS  Google Scholar 

  29. Vadiyar M, Kolekar S, Deshpande N, Chang J, Kashale A and Ghule A 2017 Ionics 23 741

    Article  CAS  Google Scholar 

  30. Ismail R, Ghafori S and Kadhim G 2013 Appl. Nanosci. 3 509

    Article  CAS  Google Scholar 

  31. Chen H, Lu Y and Hwang W 2005 Surf. Coat. Technol. 198 138

    Article  CAS  Google Scholar 

  32. Moravec P, Smolík J, Keskinen H, Makela J, Bakardjieva S and Levdansky V V 2011 Mater. Sci. Appl. 2 258

    CAS  Google Scholar 

  33. Dalavi D, Devan R, Patil R, Ma Y and Patil P 2013 Mater. Lett. 90 60

    Article  CAS  Google Scholar 

  34. Azaceta E, Chavhan S, Rossi P, Paderi M, Fantini S, Ungureanu M et al 2012 Electrochim. Acta 71 39

    Article  CAS  Google Scholar 

  35. Liu H, Liu Y and Li J 2010 Phys. Chem. Chem. Phys. 12 1685

    Article  CAS  Google Scholar 

  36. Zhang S, Dokko K and Watanabe M 2015 Chem. Sci. 6 3684

    Article  CAS  Google Scholar 

  37. Anouti M, Couadou E, Timperman L and Galiano H 2012 Electrochim. Acta 64 110

    Article  CAS  Google Scholar 

  38. Bastakoti B P, Huang H S, Chen L C, Wu K C W and Yamauchi Y 2012 Chem. Commun. 48 9150

    Article  CAS  Google Scholar 

  39. Xu L, Ding Y S, Chen C H, Zhao L, Rimkus C, Joesten R et al 2008 Chem. Mater. 20 308

    Article  CAS  Google Scholar 

  40. Yuan C, Zhang X, Su L, Gao B and Shen L 2009 J. Mater. Chem. 19 5772

    Article  CAS  Google Scholar 

  41. Pu J, Tong Y, Wang S, Sheng E and Wang Z 2014 J. Power Sources 250 250

    Article  CAS  Google Scholar 

  42. Alammar T, Shekhah O, Wohlgemuth J and Mudring A V 2012 J. Mater. Chem. 22 18252

    Article  CAS  Google Scholar 

  43. Liang K, Tang X and Hu W 2012 J. Mater. Chem. 22 11062

    Article  CAS  Google Scholar 

  44. Yu X, Xie C, Yang L and Zhang S 2014 Sens. Actuators B 195 439

    Article  CAS  Google Scholar 

  45. Cao F, Zhang F, Deng R, Hu W, Liu D, Song S et al 2011 CrystEngComm 13 4903

    Article  CAS  Google Scholar 

  46. Singh A K, Sarkar D, Khan G G and Mandal K 2013 J. Mater. Chem. A 1 12759

    Article  CAS  Google Scholar 

  47. Justin P, Meher S K and Rao G R 2010 J. Phys. Chem. C 114 5203

    Article  CAS  Google Scholar 

  48. Babu G A, Ravi G, Mahalingam T, Kumaresavanji M and Hayakawa Y 2015 Dalton Trans. 44 4485

    Article  CAS  Google Scholar 

  49. Gund G S, Dubal D P, Jambure S B, Shinde S S and Lokhande C D 2013 J. Mater. Chem. A 1 4793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors SCB is thankful to UGC for RGN fellowship. This work is partially supported by the Brain Pool Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2018H1D3A2002154) and a Human Resources Development Grant (No. 20164030201310) from the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Kolekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhise, S.C., Awale, D.V., Vadiyar, M.M. et al. A mesoporous nickel oxide nanosheet as an electrode material for supercapacitor application using the 1-(\(2^{\prime }\),\(3^{\prime }\)-dihydroxypropyl)-3-methylimidazolium hydroxide ionic liquid electrolyte. Bull Mater Sci 42, 263 (2019). https://doi.org/10.1007/s12034-019-1961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1961-7

Keywords

Navigation