Skip to main content

Advertisement

Log in

A study on zeolite-based adsorbents for \(\hbox {CO}_{2}\) capture

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, zeolite-based sorbents were prepared and examined for \(\hbox {CO}_{2}\) adsorption from a simulated flue gas mixture using a fixed-bed flow reactor. Various amines such as monoethanolamine, ethylenediamine, diethylenetriamine and triethylenetetramine (TETA) were impregnated on support materials to prepare the adsorbents. Also, the effects of various parameters on \(\hbox {CO}_{2}\) adsorption capacity have been examined in this work. Further, an effort has been made to characterize various physico-chemical properties like surface area, pore volume, chemical composition, etc. of the in-house developed sorbents. Observation showed that the \(\hbox {CO}_{2}\) adsorption capacity enhanced with amine loading up to a certain concentration. The maximum carbon capture capacity of the 30-TETA-ZSM-5 sorbent is around 53 g of \(\hbox {CO}_{2}/\hbox {kg}\) of adsorbent. The thermo-chemical stability of the adsorbents has been tested by reusing the same material for multiple adsorption–desorption cycles, and no significant change in \(\hbox {CO}_{2}\) adsorption capacities was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alhwaige A A, Agag T, Ishida H and Qutubuddin S 2013 RSC Adv. 3 16011

    Article  CAS  Google Scholar 

  2. Stangeland A 2007 Int. J. Greenhouse. Gas Control. 1 418

    Article  CAS  Google Scholar 

  3. Pirouzmand M, Nikzad-Kojanag B and Hosseini-Yazdi S A 2016 J. Braz. Chem. Soc. 27 2354

    CAS  Google Scholar 

  4. Belmabkhout Y and Sayari A 2009 Adsorption 15 318

    Article  CAS  Google Scholar 

  5. Sarfraz M and Ba-Shammakh M 2018 Braz. J. Chem. Eng. 35 217

    Article  CAS  Google Scholar 

  6. Ye S, Jiang X, Ruan L W, Liu B, Wang Y M, Zhu J F et al 2013 Micropor. Mesopor. Mater. 179 191

    Article  CAS  Google Scholar 

  7. Sanz R, Calleja G, Arencibia A and Sanz-Pérez E S 2012 Micropor. Mesopor. Mater. 158 309

    Article  CAS  Google Scholar 

  8. Knowles G P, Liang Z and Chaffee A L 2017 Micropor. Mesopor. Mater. 238 14

    Article  CAS  Google Scholar 

  9. Castellazzi P, Notaro M, Busca G and Finocchio E 2016 Micropor. Mesopor. Mater. 226 444

    Article  CAS  Google Scholar 

  10. Chen C, Park D W and Ahn W S 2014 Appl. Surf. Sci. 292 63

    Article  CAS  Google Scholar 

  11. Dantas T L P, Luna F M T, Silva I J Jr, Torres A E B, de Azevedo D C S, Rodrigues A E et al 2011 Braz. J. Chem. Eng. 28 533

    Article  CAS  Google Scholar 

  12. Madden D and Curtin T 2016 Micropor. Mesopor. Mater. 228 310

    Article  CAS  Google Scholar 

  13. Girimonte R, Formisani B and Testa F 2017 Powder Technol. 311 9

    Article  CAS  Google Scholar 

  14. Bezerra D P, Silva F W M D, Moura P A S D, Sousa A G S, Vieira R S, Rodriguez-Castellon E et al 2014 Appl. Surf. Sci. 314 314

    Article  CAS  Google Scholar 

  15. Chatti R, Bansiwal A K, Thote J A, Kumar V, Jadhav P, Lokhande S K et al 2009 Micropor. Mesopor. Mater. 121 84

    Article  CAS  Google Scholar 

  16. Frantz T S, Ruiz W A, Da Rosa C A and Mortola V B 2016 Micropor. Mesopor. Mater. 222 209

    Article  CAS  Google Scholar 

  17. Lee C H, Hyeon D H, Jung H, Chung W, Jo D H, Shin D K et al 2015 J. Ind. Eng. Chem. 23 251

  18. Dinda S 2013 Sep. Purif. Technol. 109 64

    Article  CAS  Google Scholar 

  19. Murge P, Dinda S and Roy S 2018 Energy Fuels 32 10786

    Article  CAS  Google Scholar 

  20. Qi G, Wang Y, Estevez L, Duan X, Anako N, Park A H A et al 2011 Energy Environ. Sci. 4 444

    Article  CAS  Google Scholar 

  21. Sanz R, Calleja G, Arencibia A and Sanz-Pérez E S 2010 Appl. Surf. Sci. 256 5323

    Article  CAS  Google Scholar 

  22. Xu X, Song C, Miller B G and Scaroni A W 2005 Ind. Eng. Chem. Res. 44 8113

    Article  CAS  Google Scholar 

  23. Aruldoss D, Saigoanker R, Das Savarimuthu J and Jagannathan R 2014 J. Ceram. Int. 40 7583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Council of Scientific and Industrial Research (CSIR), India, for funding (CSIR No: 22(0694)/15/EMR-II) the present research work and also grateful to the BITS–Pilani Hyderabad Campus for extending the necessary support for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Dinda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinda, S., Murge, P. & Chakravarthy Paruchuri, B. A study on zeolite-based adsorbents for \(\hbox {CO}_{2}\) capture. Bull Mater Sci 42, 240 (2019). https://doi.org/10.1007/s12034-019-1936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1936-8

Keywords

Navigation