Skip to main content
Log in

Silica-supported \(\hbox {Ni}_{{x}}\hbox {O}_{{y}}\), \(\hbox {Zn}_{{x}}\hbox {O}_{{y}}\) and \(\hbox {Mn}_{{x}}\hbox {O}_{{y}}\) nanocomposites: physicochemical characteristics and interactions with water and n-decane

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A series of \(\hbox {M}_{{x}}\hbox {O}_{{y}}/\hbox {SiO}_{{2}}\) (where M = Ni, Zn and Mn) nanocomposites were synthesized at different \(\hbox {M}_{{x}}\hbox {O}_{{y}}\) contents (0.2, 1 and 3 mmol per 1 g \(\hbox {SiO}_{2})\) using a deposition method. The samples were characterized using nitrogen adsorption–desorption, X-ray diffraction, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and photon correlation spectroscopy. The heat of immersion in water (\(Q_{\mathrm{w}})\) and n-decane (\(Q_{\mathrm{d}})\) were measured using a microcalorimetry method, and the corresponding values of the hydrophilicity index \(K_{\mathrm{h}}=Q_{\mathrm{w}}/Q_{\mathrm{d}}\) were analysed. The formation of \(\hbox {M}_{{x}}\hbox {O}_{{y}}\) on a silica surface leads to diminishing of the \(Q_{\mathrm{w}}\) and \(Q_{\mathrm{d}}\) values (calculated per 1 g of nanocomposites) because of the specific surface area reduction. However, the \(Q_{\mathrm{w}}\) values calculated per 1 \(\hbox {m}^{2}\) increase for \(\hbox {Zn}_{{x}}\hbox {O}_{{y}}/\hbox {SiO}_{{2}}\) and \(\hbox {Mn}_{{x}}\hbox {O}_{{y}}/\hbox {SiO}_{{2}}\) in comparison with the unmodified silica, and it remains unchanged for \(\hbox {Ni}_{{x}}\hbox {O}_{{y}}/\hbox {SiO}_{{2}}\). Silica modification with \(\hbox {M}_{{x}}\hbox {O}_{{y}}\) significantly changes the pH dependence of zeta potential and affects the surface charge density. A shift of the isoelectric point \((\hbox {pH}_{\mathrm{IEP}})\) and a character of the zeta potential \(\zeta \)(pH) curve are affected by the \(\hbox {M}_{{x}}\hbox {O}_{{y}}\) phase, and \(\hbox {pH}_{{\mathrm{IEP}}}\) shifts toward higher values as follows Mn < Zn < Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jackson S D and Hargreaves J S J 2009 Metal oxide catalysis (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA)

    Google Scholar 

  2. Reddy B M 2006 in Metal oxides: chemistry and applications J L G Fierro (ed), ch. 8 (Florida, USA: CRC Press) p 215

  3. Noguera C 1996 Physics and chemistry at oxide surfaces (Cambridge, UK: Cambridge University Press)

  4. Al-Nakib C, Abdur R, Jamal F Y, Shafiul A M and Mufazzal H M 2010 Appl. Surf. Sci. 256 3718

    Article  Google Scholar 

  5. Wisniewska M, Nowicki P, Bogatyrov V M, Nosal-Wiercinska A and Pietrzak R 2016 Colloids Surf., A: Physicochem. Eng. Aspects 492 12

  6. Arandiyan H R and Parvari M 2009 Braz. J. Chem. Eng. 26 63

    Article  CAS  Google Scholar 

  7. Gun’ko V M, Blitz J P, Bandaranayake B, Pakhlov E M, Zarko V I, Sulym I Y et al 2012 Appl. Surf. Sci. 258 6288

    Article  Google Scholar 

  8. Miao G, Zan Y, Sun Y, Wang H, Li S, Liu C et al 2018 Appl. Catal., A: General. 565 34

  9. Tanaka H, Boulinguiez M and Vrinat M 1996 Catal. Today 29 209

    Article  CAS  Google Scholar 

  10. Galaburda M V, Klonos P, Gun’ko V M, Bogatyrov V M, Borysenko M V and Pissis P 2014 Appl. Surf. Sci. 305 67

    Article  CAS  Google Scholar 

  11. Klonos P, Pissis P, Gun’ko V M, Kyritsis A, Guzenko N V, Pakhlov E M et al 2010 Colloids Surf., A: Physicochem. Eng. Aspects 360 220

  12. Klonos P, Kulyk K, Borysenko M V, Gun’ko V M, Kyritsis A and Pissis P 2016 Macromolecules 49 9457

    Article  CAS  Google Scholar 

  13. Ebert D Y, Dorofeeva N V, Savel’eva A S, Kharlamova T S, Salaev M A, Svetlichnyi V A et al 2018 Catal. Today https://doi.org/10.1016/j.cattod.2018.07.029

    Article  CAS  Google Scholar 

  14. Sulym I, Sternik D, Oleksenko L, Lutsenko L, Borysenko M and Derylo-Marczewska A 2016 Surf. Interfaces 5 8

    Article  CAS  Google Scholar 

  15. Bogatyrev V M, Gun’ko V M, Galaburda M V, Borysenko M V, Pokrovskiy V A, Oranska O I et al 2009 J. Colloid Interface Sci. 338 376

  16. Sulym I, Goncharuk O, Sternik D, Skwarek E, Derylo-Marczewska A, Janusz W et al 2016 Nanoscale Res. Lett. 11 111

    Article  Google Scholar 

  17. Sulym I, Goncharuk O, Skwarek E, Sternik D, Borysenko M V, Derylo-Marczewska A et al 2015 Colloids Surf., A: Physicochem. Eng. Aspects 482 631

  18. Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V and Suib S L 1997 Science 276 926

    Article  CAS  Google Scholar 

  19. Kim S C and Shim W G 2010 Appl. Catal. B: Environ. 98 180

  20. Suib S L 2008 Acc. Chem. Res. 4 479

    Article  Google Scholar 

  21. Park J H, Jang I, Kwon B, Jang S C and Oh S G 2013 Mater. Res. Bull. 48 469

    Article  CAS  Google Scholar 

  22. Fan Z and Lu J G 2005 J. Nanosci. Nanotechnol. 5 1561

    Article  CAS  Google Scholar 

  23. Wang Z L and Song J 2006 Science 312 242

    Article  CAS  Google Scholar 

  24. Yoo R, Lee D, Cho S and Lee W 2018 Sens. Actuators B: Chem. 254 1242

  25. Smijs T G and Pavel S 2011 Nanotechnol. Sci. Appl. 4 95

    Article  CAS  Google Scholar 

  26. Yuan Q, Hein S and Misra R D K 2010 Acta Biomater. 6 2732

    Article  CAS  Google Scholar 

  27. Sharma D, Rajput J, Kaith B S, Kaur M and Sharma S 2010 Thin Solid Films 519 1224

    Article  CAS  Google Scholar 

  28. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V and Buszewski B 2017 Adv. Colloid Interface Sci. 249 37

    Article  Google Scholar 

  29. Avendaño E, Azens A, Isidorsson J, Karmhag R, Niklasson G A and Granqvist C G 2003 Solid State Ionics 165 169

    Article  Google Scholar 

  30. Das D, Pal M, Di Bartolomeo E, Traversa E and Chakravorty D 2000 J. Appl. Phys. 88 6856

    Article  CAS  Google Scholar 

  31. Martucci A, Bassiri N, Guglielmi M, Armelao L, Gross S and Pivin J C 2003 J. Sol-Gel Sci. Technol. 26 993

    Article  CAS  Google Scholar 

  32. Mihaly M, Comanescu A F, Rogozea A E, Vasile E and Meghea A 2011 Mater. Res. Bull. 46 1746

    Article  CAS  Google Scholar 

  33. Lai T L, Lee C C, Huang G L, Shu Y Y and Wang C B 2008 Appl. Catal. B: Environ 78 151

    Article  CAS  Google Scholar 

  34. Gun’ko V M, Zarko V I, Leboda R, Marciniak M and Chibowski S 2000 J. Colloid Interface Sci. 230 396

    Article  Google Scholar 

  35. Gun’ko V M, Pakhlov E M, Skubiszewska-Zięba J and Blitz J P 2017 Vib. Spectrosc. 88 56

    Article  Google Scholar 

  36. Gun’ko V M, Zarko V I, Leboda R and Chibowski E 2001 Adv. Colloid Interface Sci. 91 1

    Article  Google Scholar 

  37. Gun’ko V M, Turov V V, Zarko V I, Goncharuk O V and Blitz J P 2016 Adv. Colloid Interface Sci. 235 108

    Article  Google Scholar 

  38. Gun’ko V M, Nychiporuk Y M, Zarko V I, Goncharuk E V and Gude K 2007 Appl. Surf. Sci. 253 3215

    Article  Google Scholar 

  39. Gregg S J and Sing K S W 1982 Adsorption, surface area and porosity (London: Academic Press)

    Google Scholar 

  40. Gun’ko V M 2014 Appl. Surf. Sci. 307 444

    Article  Google Scholar 

  41. Jenkins R and Snyder R L 1996 Introduction to X-ray powder diffractometry (New York: Wiley)

    Book  Google Scholar 

  42. JCPDS Database, International Center for Diffraction Data, PA 2001 Available: http://www.icdd.com

  43. Brown M E and Gallagher P K 2003 (ed) Handbook of thermal analysis and calorimetry: applications to inorganic and miscellaneous materials (New York: Elsevier)

  44. Goncharuk O V 2015 J. Therm. Anal. Calorim. 120 1365

    Article  CAS  Google Scholar 

  45. Sing K S W, Everett D H, Haul R A W, Moscou L, Pieroti R A, Rouquerol J et al 1985 Pure Appl. Chem. 57 603

    Article  CAS  Google Scholar 

  46. Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J et al 2015 Pure Appl. Chem.; aop; IUPAC Technical Report; Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  47. Gun’ko V M and Turov V V 2013 Nuclear magnetic resonance studies of interfacial phenomena (Boca Raton: CRC Press)

    Book  Google Scholar 

  48. Maggi R, Martens J A, Poncelet G, Grange P, Jacobs P A and Delmon B 1998 (ed) Preparation of catalysts 7 (New York: Elsevier)

  49. Kapoor V J and Brown W D 1994 (ed) Proceedings of the Third Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films (Pannington: The Electrochemical Society Inc)

  50. Adamson A W and Gast A P 1997 Physical chemistry of surfaces 6th ed. (New York: Wiley)

    Google Scholar 

  51. Kiselev A V 1986 Intermolecular interactions in adsorption and chromatography (Moscow: Vysshaya Shkola; in Russian)

    Google Scholar 

  52. Kiselev A V 1965 Discuss. Faraday Soc. 40 205

    Article  Google Scholar 

  53. Rehbinder P A 1979 Surface phenomena in disperse systems. Physical chemical mechanics (Moscow: Nauka Press; in Russian)

    Google Scholar 

  54. Somasundaran P 2006 (ed) Encyclopedia of surface and colloid science, vol. 1 (Boca Raton: CRC Press)

    Google Scholar 

  55. Iler R K 1979 The chemistry of silica (Chichester: Wiley)

    Google Scholar 

  56. Tertykh V A and Belyakova L A 1991 Chemical reactions involving the silica surface (Kiev: Naukova Dumka; in Russian)

    Google Scholar 

  57. Zaki M I, Hasan M A, Al-Sagheer F A and Pasupulety L 2001 Colloids Surf. A: Physicochem. Eng. Aspects 190 261

    Article  CAS  Google Scholar 

  58. Zaki M I, Hussein G A M, Mansour S A A, Ismail H M and Mekhemer G A H 1997 Colloids Surf. A: Physicochem. Eng. Aspects 127 47

    Article  CAS  Google Scholar 

  59. Kosmulski M 2009 J. Colloid Interface Sci. 337 439

    Article  CAS  Google Scholar 

  60. Wiśniewska M, Nowicki P, Bogatyrov V M, Nosal-Wiercińska A and Pietrzak R 2016 Colloids Surf. A: Physicochem. Eng. Aspects 492 12

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Education of Ukraine (grant agreement no. M/118-2018) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Goncharuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharuk, O., Bogatyrov, V., Kazakova, O. et al. Silica-supported \(\hbox {Ni}_{{x}}\hbox {O}_{{y}}\), \(\hbox {Zn}_{{x}}\hbox {O}_{{y}}\) and \(\hbox {Mn}_{{x}}\hbox {O}_{{y}}\) nanocomposites: physicochemical characteristics and interactions with water and n-decane. Bull Mater Sci 42, 243 (2019). https://doi.org/10.1007/s12034-019-1935-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1935-9

Keywords

Navigation