Skip to main content
Log in

Enhanced intercalation of organo-muscovite prepared via hydrothermal reaction at low temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Muscovite clay is an ideal reinforcing filler due to its high-aspect ratio. However, it does not swell in water, making it hard to be treated and intercalated. In this study, ion exchange treatment is carried out on muscovite clay using cetyltrimethylammonium bromide (CTAB) cations via two-step intercalation method. The intercalation steps included: inorganic–inorganic ion exchange treatment and inorganic–organic ion exchange treatment under hydrothermal conditions. The intercalation of muscovite particles was examined with various techniques to analyse the physical and chemical changes. Furthermore, the hydrothermal conditions for effective \(\hbox {CTA}^{+}\) ion intercalation within muscovite interlayers prepared via the hydrothermal process at low temperature, \(180{^{\circ }}\hbox {C}\), under different hydrothermal reaction times and CTAB/Li-Mus mass ratio were investigated. Fourier transform infra-red (FTIR) analysis revealed that the \(\hbox {CTA}^{+}\) ions are diffused into the interlayers of aluminosilicate and formed a strong electrostatic bond with the clay surface. X-ray powder diffraction analysis showed that the interplanar spacing in the organo-muscovite samples is almost identical as the hydrothermal reaction time is prolonged beyond 12 h. An optimum limit of the CTAB to Li-Mus ratio is observed as the \(d_{002}\) plane spacing is increased with an increase of the mass ratio of CTAB to Li-Mus up to 1.0 C and decreased with a further increase in the mass ratio. In addition, the intercalated \(\hbox {CTA}^{+}\) chains are homogenously distributed and formed a paraffin-like arrangement in the muscovite clay. Besides, the structure of aluminosilicate layers is not affected or damaged after both treatments according to FTIR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bekri-Abbes I and Srasra E 2006 Bull. Mater. Sci. 29 251

    Article  CAS  Google Scholar 

  2. Murray H H 1991 Appl. Clay Sci. 5 379

    Article  CAS  Google Scholar 

  3. Sharma S, Kumar P M and Moholkar V S 2017 Ultrason. Sonochem. 36 212

    Article  CAS  Google Scholar 

  4. Jahanmardi R, Kangarlou B and Dibazar A 2013 J. Nanostruct. Chem. 3 82

    Article  Google Scholar 

  5. Strankowska J, Piszczyk Ł, Strankowski M, Danowska M, Szutkowski K, Jurga S et al. 2013 Eur. Phys. J. Spec. Top. 222 2179

    Article  Google Scholar 

  6. Xi X, Zhen W, Bian S and Wang W 2015 Polymer (Korea) 39 601

    Article  CAS  Google Scholar 

  7. Mousa M H, Dong Y and Davies I J 2016 Int. J. Polym. Mater. Polym. Biomater. 65 225

    Article  CAS  Google Scholar 

  8. Yu X, Zhao L, Gao X, Zhang X and Wu N 2006 J. Solid State Chem. 179 1569

    Article  CAS  Google Scholar 

  9. Yu X, Zhao L, Gao X, Zhang X and Wu N 2006 J. Solid State Chem. 179 1525

    Article  CAS  Google Scholar 

  10. Omar M F, Akil H M, Ahmad Z A, Rasyid M F A and Noriman N Z 2016 J. Thermoplast. Compos. Mater. 29 867

    Article  CAS  Google Scholar 

  11. Rashid E S A, Rasyid M F A, Akil H M, Ariffin K and Kooi C C 2011 Appl. Clay Sci. 52 295

    Article  Google Scholar 

  12. Kudus M H A, Akil H M and Rasyid M F A 2012 Mater. Lett. 79 92

    Article  Google Scholar 

  13. Aitta E, Leskelä M, Lajunen L H J, Jyrkäs K and Seppälä E 1986 J. Chem. Technol. Biotechnol. 36 169

    Article  CAS  Google Scholar 

  14. Caseri W R, Shelden R A and Suter U W 1992 Colloid Polym. Sci. 270 392

    Article  CAS  Google Scholar 

  15. Leiro J A, Torhola M and Laajalehto K 2017 J. Phys. Chem. Solids 100 40

    Article  CAS  Google Scholar 

  16. Almeida L A, de Marques M F V and Dahmouche K 2018 J. Appl. Polym. Sci. 135 45587

    Article  Google Scholar 

  17. Omar M F, Akil H M, Rasyid M F A and Sharif J M 2015 J. Compos. Mater. 49 1195

    Article  CAS  Google Scholar 

  18. Yu X 2007 Micropor. Mesopor. Mat. 98 70

    Article  CAS  Google Scholar 

  19. Bracke G, Satir M and Krauß P 1995 Clays Clay Miner. 43 732

    Article  CAS  Google Scholar 

  20. Kodama T, Hasegawa K, Shimizu K and Komarneni S 2003 Sep. Sci. Technol. 38 679

  21. Shimizu K, Hasegawa K, Nakamuro Y, Kodama T and Komarneni S 2004 J. Mater. Chem. 14 1031

    Article  CAS  Google Scholar 

  22. Zhao L Y, Wang X K, Wu N Z and Xie Y C 2005 Colloid Polym. Sci. 283 699

    Article  CAS  Google Scholar 

  23. Metz S, Anderson R L, Geatches D L, Suter J L, Lines R and Greenwell H C 2015 J. Phys. Chem. C 119 12625

    Article  CAS  Google Scholar 

  24. Che Ismail N H, Ahmad Bakhtiar N S A and Md Akil H 2017 Mater. Chem. Phys. 196 324

    Article  CAS  Google Scholar 

  25. Bae H J, Goh Y, Yim H, Yoo S Y, Choi J W and Kwon D K 2019 Mater. Chem. Phys. 221 168

    Article  CAS  Google Scholar 

  26. Tominaga Y, Fukushima K, Takezawa Y, Shimamoto D, Imai Y and Hotta Y 2017 Adv. Powder Technol. 28 1911

    Article  CAS  Google Scholar 

  27. Pozsgay A 2004 Eur. Polym. J. 40 27

    Article  CAS  Google Scholar 

  28. Paul R, Datta S C, Manjaiah K M and Bhattacharyya R 2017 Appl. Clay Sci. 144 19

    Article  CAS  Google Scholar 

  29. Ramadan A R, Esawi A M K and Gawad A A 2010 Appl. Clay Sci. 47 196

    Article  CAS  Google Scholar 

  30. Sayin M and Von Reichenbach H G 1978 Clay Miner. 13 241

    Article  CAS  Google Scholar 

  31. Stubičan V and Roy R 1961 Am. Mineral. 46 32

    Google Scholar 

  32. Farmer V C and Russell J D 1964 Spectrochim. Acta 20 1149

    Article  CAS  Google Scholar 

  33. Olad A 2011 in Reddy B (ed) Advances in diverse industrial applications of nanocomposites (Croatia: InTech) p 122

  34. Garcia A D and Catterton A J 2003 Microgram J. 1 44

    CAS  Google Scholar 

  35. Lee S Y and Kim S J 2002 Clays Clay Miner. 50 435

    Article  CAS  Google Scholar 

  36. Saeid G, Mark T B and Andrew B 1997 J. Colloid Interface Sci. 196 191

    Article  Google Scholar 

  37. Xi Y, Frost R L and He H 2007 J. Colloid Interface Sci. 305 150

    Article  CAS  Google Scholar 

  38. Karp G 2013 in Witt K, Stauber L, Morris L (eds) Cell and molecular biology: concepts and experiments, 7th edn (Hoboken, NJ: John Wiley & Sons Ltd) p 120

  39. Wang L, Chen Z, Wang X, Yan S, Wang J and Fan Y 2011 Appl. Clay Sci. 51 151

    Article  CAS  Google Scholar 

  40. Liang Y, Ding H, Wang Y, Liang N and Wang G 2013 Appl. Clay Sci. 74 109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by short term grant of Universiti Sains Malaysia (grant no. 304/PBAHAN/60313035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syazana Ahmad Zubir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng-Lip, L., Salleh, N.M., Rahman, N.‘.A. et al. Enhanced intercalation of organo-muscovite prepared via hydrothermal reaction at low temperature. Bull Mater Sci 42, 242 (2019). https://doi.org/10.1007/s12034-019-1931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1931-0

Keywords

Navigation