Skip to main content

Advertisement

Log in

Crystal structure, optical and electrical characteristics of rutile \(\hbox {TiO}_{2}\) nanocrystallite-based photoanodes doped with \(\hbox {GeO}_{2}\)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The effect of germanium dioxide, \(\hbox {GeO}_{2}\) doping on dye-sensitized solar cell (DSSC) \(\hbox {TiO}_{2}\) nanocrystallite photoanodes with composition (\(\hbox {TiO}_{2}\)\((\hbox {GeO}_{2})_{x}\): \(0\le x \le 0.3\hbox { wt}\%\)) has been studied. The pure sample and \(\hbox {GeO}_{2}\)-doped samples have been synthesized by a conventional solid-state reaction method and analysed by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and ultraviolet–visible spectroscopy techniques. The photovoltaic characteristics of the prepared samples have been studied by employing JV measurements. The pattern of XRD depicted that the dominating phase in the sample with \(x=0\) is a rutile tetragonal phase with the \(P4_{2}/{ mnm}\) space group. An increase in \(\hbox {GeO}_{2}\) concentration leads to an appearance and rise of another hexagonal phase structure of \(\upalpha \)-\(\hbox {GeO}_{2}\) with the \(P3_{2}21\) space group. Data obtained from the UV–visible spectroscopy measurements reflect that the optical energy gap (\(E^{\mathrm{optical}}\)) increases with increasing \(\hbox {GeO}_{2}\) content, while the optical refractive index decreases. JV photovoltaic characteristics confirm that the DSSCs doped with low-concentration doping, \(x=0.05\) and 0.1 of \(\hbox {GeO}_{2}\) have higher values for conversion efficiency (\(\eta \)), fill factor and short circuit current density (\(J_{\mathrm{sc}}\)) compared with samples with high-concentration doping (\(x=0.2\) and 0.3) of \(\hbox {GeO}_{2}\). The present results showed that \(\hbox {TiO}_{2}\)\((\hbox {GeO}_{2})_{x}\) (\(x=0.05\) and 0.1 wt%) films are potential candidates for optical filter materials and optoelectrical and photo-conversion energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grätzel M 2004 J. Photochem. Photobiol. A: Chem. 164 3

    Article  Google Scholar 

  2. Xu X, Bai S, Fang Y, Chen A, Li D and Lin Y 2014 J. Electrochim. Acta 145 286

    Article  CAS  Google Scholar 

  3. Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G et al 2009 J. Adv. Mater. 21 3668

    Article  CAS  Google Scholar 

  4. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L et al 2015 J. Chem. Rev. 115 2136

    Article  CAS  Google Scholar 

  5. Bakhshayesh A M and Farajisafiloo N 2015 J. Appl. Surf. Sci. 331 58

    Article  CAS  Google Scholar 

  6. Wen Z and Tian-Mo L 2010 J. Phys. B: Condens. Matter 405 564

    Article  CAS  Google Scholar 

  7. Nagaraju S C, Roy A S and Ramgopal G 2015 J. Meas. 60 214

    Article  Google Scholar 

  8. Mohammadi M R, Bakhshayesh A M, Sadri F and Masroor M 2013 J. Sol–Gel Sci. Technol. 67 77

    Article  CAS  Google Scholar 

  9. Aysin B, Ozturk A and Park J 2013 J. Ceram. Int. 39 7119

    Article  CAS  Google Scholar 

  10. Ming H, Huang H, Pan K, Li H, Liu Y and Kang Z 2012 J. Solid State Chem. 192 305

    Article  CAS  Google Scholar 

  11. Zhao N, Yao M, Li F and Lou F 2011 J. Solid State Chem. 184 2770

    Article  CAS  Google Scholar 

  12. Naraginti S, Thejaswini T V, Prabhakaran D, Sivakumar A, Satyanarayana V S and Prasad A S 2015 J. Spectr. Acta A: Mol. Biomol. Spectrosc. 149 571

  13. Kato H and Kudo A 2002 J. Phys. Chem. B 106 5029

    Article  CAS  Google Scholar 

  14. Niishiro R, Kato H and Kudo A 2005 J. Phys. Chem. 7 2241

    CAS  Google Scholar 

  15. Badr M H and Abouhaswa A S 2018 J. Mater. Sci.: Mater. Electron. 29 11566

    CAS  Google Scholar 

  16. Zhou J, Zhao G L and Han G R 2009 J. Funct. Mater. 40 2000

    CAS  Google Scholar 

  17. Ahmad M S, Rahim N A and Pandey A K 2018 J. Opt. 157 134

    CAS  Google Scholar 

  18. Badr M H, El-Hamalawy A A, El-Kholy M M and Ali S A 2017 Inter. J. Sci. RSC Rev. (IJSRR) 6 1

    CAS  Google Scholar 

  19. Rodriquez-Carvayal J 1993 J. Phys. B 192 55

    Article  Google Scholar 

  20. Wei W, Tian A, Jia F, Wang K, Qu P and Xu M 2016 J. RSC Adv. 6 87440

    Article  CAS  Google Scholar 

  21. Sevik C and Bulutay C 2007 J. Mater. Sci. 42 16

    Article  Google Scholar 

  22. Shannon R D 1976 Acta Crystallogr. Sect. A 32 751

    Google Scholar 

  23. Zhang Y, Zhang H, Xu Y and Wang Y 2003 J. Mater. Chem. 13 2261

    Article  CAS  Google Scholar 

  24. Brinker C J and Scherer G W 1990 Sol–gel science, the physics and chemistry of sol–gel processing (Boston: Academic Press) p 908

  25. Hu H, Ding J, Zhang S, Li Y, Bai L and Yuan N 2013 J. Nanoscale Res. Lett. 8 10

    Article  CAS  Google Scholar 

  26. El-Nahass M M, Abd-El-Rahman K F, Farag A A and Darwish A A 2004 Int. J. Mod. Phys. B 18 421

    Article  CAS  Google Scholar 

  27. Kamath G B, Joseph C M and Menon C S 2002 Mater. Lett. 57 730

    Article  Google Scholar 

  28. Tauc J 1974 in Amorphous and liquid semiconducttors J Tauc (ed) (New York: Plenum Press)

  29. Mott N F and Davies E A 1979 Electronic processes in non-crystalline materials (Oxford: Clarendon Press)

    Google Scholar 

  30. Alarcon L E, Arrieta A, Camps E, Muhl S, Rudil S and Santiago E V 2007 Appl. Surf. Sci. 254 412

    Article  Google Scholar 

  31. Ali A A, Rammah Y S, El-Mallawany R and Souri D 2017 Measurements 105 72

    Google Scholar 

  32. Dimitrov V and Sakka S 1996 J. Appl. Phys. 79 1736

    Article  CAS  Google Scholar 

  33. Mahdi M A, Hassan J J, Kasim S J, Ng S S and Hassan Z 2014 J. Mater. Sci. Semicon. Proc. 26 87

    Article  CAS  Google Scholar 

  34. Ito S, Ishikawa K, Wen C J, Yanagida S and Watanabe T 2002 J. Bull. Chem. Soc. Jpn. 73 2609

    Article  Google Scholar 

  35. Saito Y, Kambe S, Kitamura T, Wada Y and Yanagida S 2004 Sol. Energy Mater. Sol. Cells 73 1

    Article  Google Scholar 

  36. Kitiyanan A, Kato T, Suzuki Y and Yoshikawa S 2006 Photochem. Photobiol. A: Chem. 179 130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Abouhaswa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., El-Hamalawy, A.A. & Rammah, Y.S. Crystal structure, optical and electrical characteristics of rutile \(\hbox {TiO}_{2}\) nanocrystallite-based photoanodes doped with \(\hbox {GeO}_{2}\). Bull Mater Sci 42, 252 (2019). https://doi.org/10.1007/s12034-019-1929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1929-7

Keywords

Navigation