Preparation of copper–silver alloy with different morphologies by a electrodeposition method in 1-butyl-3-methylimidazolium chloride ionic liquid

  • Sun Jie
  • Ming Ting-YunEmail author
  • Qian Hui-Xuan
  • Li Qi-Song


Electrodeposition of a copper–silver alloy based on a 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid was studied. The electrochemical behaviour of copper and silver ions was characterized by cyclic voltammogram. The morphologies and phase compositions of copper–silver alloy coating under different electrodeposition conditions were investigated by scanning electron microscopy and X-ray diffraction. The results show that copper–silver alloys with different micro-morphologies can be obtained under different potential conditions in BMIC. Co-deposition of the copper–silver alloy followed a two-step reduction process, the first step is the reduction of the cupric ion to the cuprous ion and the second step is the simultaneous reduction of the cuprous ion and the silver ion to form an alloy. A dendritic alloy can be obtained at − 0.60 V, a bract alloy can be obtained at − 0.80 V and a granular alloy can be obtained at − 1 V. The coating particle size at \(60^{\circ }\hbox {C}\) was smaller than the particle size obtained at \(40^\circ \hbox {C}\). The Cu–Ag alloy prepared by electrodeposition in ionic liquids consists of single-phase copper and single-phase silver.


Ionic liquid electrodeposition metals and alloys copper–silver alloy morphology thin films 


  1. 1.
    Sun J, Ming T Y, Qian H X, Zhang M K and Tan Y 2018 Chem. J. Chinese Univ. 39 1497Google Scholar
  2. 2.
    Ji S S, Yang P X, Zhang J Q, Lian Y, Zhang J and An M Z 2014 Mater. Lett. 133 14CrossRefGoogle Scholar
  3. 3.
    Peter D V, Alicja S, Edward M, Jan F and Koen B 2013 Electrochim. Acta 108 788CrossRefGoogle Scholar
  4. 4.
    Rousse C, Beaufils S and Fricoreaux P 2013 Electrochim. Acta 107 624CrossRefGoogle Scholar
  5. 5.
    Suneesh P V, Ramachandran T and Satheesh Babu T G 2018 Mater. Today: Proc. 5 16640Google Scholar
  6. 6.
    Yang P X, Zhao Y B, Su C N, Yang K J, Yan B and An M Z 2013 Electrochim. Acta 88 203CrossRefGoogle Scholar
  7. 7.
    Chen P Y, Deng M J and Zhuang D X 2009 Electrochim. Acta 54 6935CrossRefGoogle Scholar
  8. 8.
    Debabrata P and Ramana G R 2014 Mater. Chem. Phys. 143 564CrossRefGoogle Scholar
  9. 9.
    Franz S, Barzi E, Turrioni D, Glionna L and Bestetti M 2015 Mater. Lett. 161 613CrossRefGoogle Scholar
  10. 10.
    Rajagopal V, Velayutham D, Suryanarayanan V, Kathiresan M and Ho K C 2018 J. Taiwan Inst. Chem. Eng. 87 158CrossRefGoogle Scholar
  11. 11.
    Reyna-González J M, Reyes-López J C and Aguilar-Martínez M 2013 Electrochim. Acta 94 344CrossRefGoogle Scholar
  12. 12.
    Barrado E, Rodriguez J A, Hernández P and Castrillejo Y 2016 J. Electroanal. Chem. 768 89CrossRefGoogle Scholar
  13. 13.
    Suryanto B H R, Gunawan C A, Lu X Y and Zhao C 2012 Electrochim. Acta 81 98CrossRefGoogle Scholar
  14. 14.
    Fu C P, Zhou H H, Peng W C, Chen J H and Kuang Y F 2008 Electrochem. Commun. 10 806CrossRefGoogle Scholar
  15. 15.
    Ashraf B and Volkmar N 2015 Electrochem. Commun. 51 113CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Environmental and Chemical EngineeringShenyang Ligong UniversityShenyangPeople’s Republic of China

Personalised recommendations