Skip to main content
Log in

Investigating silk yield and morphological changes in silk fibres obtained from silkworms fed with Ag and/or \(\hbox {TiO}_{2}\) nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Natural polymers like silk can be augmented in vivo with metallic elements to improve their intrinsic properties and stability. This study demonstrates the uptake of Ag and/or \(\hbox {TiO}_{2}\) nanoparticles as diet supplements by silkworms. Nanoparticles dose on morphological changes in silk fibroin fibres and a change in overall silk yield was investigated. Though significant fibre reinforcement with Ag and/or \(\hbox {TiO}_{2}\) was not noticed; an increase of 6% in the silk production was observed when silkworms fed with a particular composition of \(\hbox {Ag} + \hbox {TiO}_{2}\) nanoparticles (0.37 mM each) in their diet. Here, an average diameter of the degummed silk fibre was \({\sim }10.91 \upmu \hbox {M}\) with a roughness parameter value \(R_{\mathrm{q}}\) being 134. This value is comparable to silk fibres obtained from silkworms fed with \(\hbox {Ag} + \hbox {TiO}_{2}\) (0.22 \(+\) 0.53 mM) nanoparticles and this \(R_{\mathrm{q}}\) value was also low when compared to the other tested compositions with nanoparticles. Silks from the control samples (devoid of nanoparticles in their feed) had high diameter fibres and are with low \(R_{\mathrm{q}}\) values and silk yield. However, nanoparticle supplementation to the silkworm’s diet resulted in low diameter silk fibres with varying roughnessess and with improved silk yield for the tested doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cai L, Shao H, Hu X and Zhang Y 2015 ACS Sustain. Chem. Eng. 3 2551

    Article  CAS  Google Scholar 

  2. Fei X, Jia M, Du X, Yang Y, Zhang R, Shao Z et al 2013 Biomacromolecules 14 4483

    Article  CAS  Google Scholar 

  3. Andersson M, Johansson J and Rising A 2016 Int. J. Mol. Sci. 17 1290

    Article  Google Scholar 

  4. Mathivanan V, Ganesh Prabu P, Selvisabhanayakam B D, Pradhap M and Vivekananthan T 2012 Int. J. Res. Biol. Sci. 2 60

    Google Scholar 

  5. Tang B, Li J, Hou X, Afrin T, Sun L and Wang X 2013 Ind. Eng. Chem. Res. 52 4556

    Article  CAS  Google Scholar 

  6. Cheng L, Huang H, Chen S, Wang W, Dai F and Zhao H 2017 Mater. Des. 129 125

    Article  CAS  Google Scholar 

  7. Li B, Xie Y, Cheng Z, Cheng J, Hu R, Gui S et al 2012 Biol. Trace Elem. Res. 150 221

    Article  Google Scholar 

  8. Sheikh F A, Ju H W, Moon B M, Park H J, Kim J H, Lee O J et al 2013 Nanoscale Res. Lett. 8 303

    Article  Google Scholar 

  9. Ni M, Li F, Tian J, Hu J, Zhang H, Xu K et al 2015 Biol. Trace Elem. Res. 166 225

    Article  CAS  Google Scholar 

  10. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S and Gedanken A 2008 Nanotechnology 19 245705

    Article  Google Scholar 

  11. Dong P, Cheng X, Huang Z, Chen Y, Zhang Y, Nie X et al 2018 Mater. Res. Bull. 97 89

    Article  CAS  Google Scholar 

  12. Khude P, Majumdar A and Butola B S 2018 Fibers Polym. 19 1403

    Article  CAS  Google Scholar 

  13. Qin Y 2019 in Rajendran S (ed.) Advanced textiles for wound care, 2nd edn, The Textile Institute Book Series (UK: Woodhead Publishing) p 193

  14. Haug S, Roll A, Schmid-Grendelmeier P, Johansen P, Wüthrich B, Kündig T M et al 2006 Biofunct. Text. Skin 33 144

    CAS  Google Scholar 

  15. Mason R 2008 J. Fam. Health Care 18 63

    Google Scholar 

  16. Rao K J and Paria S 2013 Mater. Res. Bull. 48 628

    Article  Google Scholar 

  17. Ondimu S and Murase H 2008 IFAC Proc. 41 641

    Article  Google Scholar 

  18. Dong Q, Su H and Zhang D 2005 J. Phys. Chem. B 109 17429

    Article  CAS  Google Scholar 

  19. Chen X and Wei L 2014 J. Eng. Fibers Fabr. 9 6

    Google Scholar 

  20. Khanchaiyapoom K and Prachayawarakorn J 2008 J. Met. Mater. Miner. 18 237

    Google Scholar 

  21. Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X et al 2017, Biol. Trace Elem. Res. 180 327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the University Innovation Cluster, Centre for Converging Technologies, University Science & Instrumentation Centre, University of Rajasthan and Silk Board and Reeling Unit, Kakinada, Andhra Pradesh, India for their scientific and analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Jagajjanani Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K.J., Korumilli, T. & Patni, V. Investigating silk yield and morphological changes in silk fibres obtained from silkworms fed with Ag and/or \(\hbox {TiO}_{2}\) nanoparticles. Bull Mater Sci 42, 222 (2019). https://doi.org/10.1007/s12034-019-1913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1913-2

Keywords

Navigation