Skip to main content
Log in

Evaluation of anticorrosive behaviour of ZnO nanotetra-pods on a AZ91-grade Mg alloy

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Highly cross-linked zinc oxide (ZnO) with the nanorod morphology of tetra-pods was successfully prepared using a microwave irradiation (MWI) technique. In comparison with the available conventional techniques, the MWI technique has the advantage of producing different morphological structures with high purity and in a shorter reaction time. These tetra-pods consist of a ZnO core in the zinc blende from which four ZnO arms emerge in the wurtzite structure. In this investigation, the effects of irradiation times and the growth mechanism of ZnO nanotetra-pods were discussed. The structural, morphological and optical properties of ZnO nanorods were investigated by field emission scanning electron microscopy, X-ray diffraction, an ultra violet visible spectrometry and energy-dispersive spectroscopy. The electrochemical corrosion behaviours of an AZ91-grade Mg alloy and a ZnO/PN nanotetra-pod-coated Mg alloy were investigated. The Tafel plot revealed that the corrosion of Mg drastically decreased on coating with a thin layer of ZnO nanotetra-pods and PN (Mg/PN/ZnO) compared to Mg in a KOH electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ram M K, Stefanakos E K and Yogi Goswami D 2013 Mater. Sci. Semicond. Process. 16 2070

    Article  Google Scholar 

  2. Witte F, Hort N, Vogt C, Cohen S, Kainer K U, Willumeit R et al 2008 Curr. Opin. Solid State Mater. Sci. 12 63

    Article  CAS  Google Scholar 

  3. Aochekpe N, Olorunfemi P O and Ngwuluka N C 2009 Trop. J. Pharm. Res. 8 265

    Google Scholar 

  4. Erdem Alaca B 2013 Int. Mater. Rev. 54 245

    Article  Google Scholar 

  5. Toranzos V J, Portiz G, Luis Mochan W and Zerbino J O 2017 Mater. Res. Express 4 1

    Article  Google Scholar 

  6. Selvam M, Srither S R, Saminathan K and Rajendran V 2016 J. Ion. 9 1622

    Google Scholar 

  7. Paula D R and Robeson L M 2008 Polymer 49 3187

    Article  Google Scholar 

  8. Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 1

    Article  Google Scholar 

  9. Fouad O A, Dai Q, Khader A E R S and Samy Ei-shall M 2011 J. Nanopart. Res. 13 7075

  10. Zhu L and Zeng W 2017 Sens. Actuators A 267 242

    Article  CAS  Google Scholar 

  11. Dahiya A S, Opoku C, Sporea R A and Sarvankumar B 2016 Sci. Rep. 6 19232

    Article  CAS  Google Scholar 

  12. Opokua C, Dahiyaa A S, Oshman C, Cayrela F, Poulin-Vittrant G, Alquiera D et al 2015 Phys. Proc. 70 858

    Article  Google Scholar 

  13. Ellmer K 2014 Nat. Photonics 6 809

    Article  Google Scholar 

  14. Mani G K, Morohoshi M, Yasoda Y, Yokoyama S, Kimura H and Tsuchiya K 2017 ACS Appl. Mater. Interfaces 9 5193

    Article  CAS  Google Scholar 

  15. Shiryaev M A, Eremin S A and Baranov A N 2014 Nanotechnol. Russ. 9 99

    Article  CAS  Google Scholar 

  16. Chen H and Fang X 2015 Mater. Today 18 493

    Article  CAS  Google Scholar 

  17. Hongsitha N, Wongrata E, Kerdcharoen T and Choopuna S 2010 Sens. Actuators B 144 67

    Article  Google Scholar 

  18. Cao Z, Wang Y, Li Z G and Yu N 2016 Nanoscale Res. Lett. 11 347

    Article  Google Scholar 

  19. Hasnidawani J N, Azlina H N, Norita H, Bonnia N N, Ratim S and Ali E S 2016 Proc. Chem. 19 211

    Article  CAS  Google Scholar 

  20. Meng Y, Lin Y and Lin Y 2014 Ceram. Int. 40 1693

    Article  CAS  Google Scholar 

  21. Abduev A K, Shasvarov A, Akhmedov A K and Terukov E I 2002 Tech. Phys. Lett. 28 952

    Article  CAS  Google Scholar 

  22. Cuellar Murilloa G A, Bojorgea C D, Herediaa E A and Walsoe de Recaa N E 2015 Proc. Mater. Sci. 8 630

  23. Yi G-C, Wang C and Park W I 2005 Semicond. Sci. Technol. 20 22

    Article  Google Scholar 

  24. Qurashi A 2013 J. Phys. Chem. Solids 74 166

    Article  CAS  Google Scholar 

  25. Liu Y, Li S, Lv H, Ping D, Li S, Li Z et al 2014 Ceram. Int. 40 2973

    Article  CAS  Google Scholar 

  26. Hosanpoor M, Aliofkhazraei M and Delavari H 2015 Proc. Mater. Sci. 11 320

    Article  Google Scholar 

  27. Hasnidawani J N, Azlina H N, Norita H, Samat N, Bonnia N N and Surip S N 2017 Mater. Sci. Forum 894 76

    Article  Google Scholar 

  28. Selvam M, Saminathan K, Siva P, Saha P and Rajendran V 2016 J. Mater. Chem. Phys. 1 129

    Article  Google Scholar 

  29. Sherif E-S M and Almajid A A 2011 Int. J. Electrochem. Sci. 6 2131

    Google Scholar 

  30. Subannajui K 2016 Chem. Commun. 52 3195

    Article  CAS  Google Scholar 

  31. Vogels M J, Kloprogge T and Geus J W 2005 J. Colloid Interface Sci. 285 86

    Article  CAS  Google Scholar 

  32. Brindha R, Karthigai Selvii B and Selvam M 2018 J. Nanosci. Nanotechnol. App. 2 6

    Google Scholar 

  33. Lemoine P, Quinn J P, Maguire P D and McLaughlin J A D 2017 Carbon 44 2617

    Article  Google Scholar 

  34. Newton M C and Warburton P A 2007 Mater. Today 10 50

    Article  CAS  Google Scholar 

  35. Shiojini M and Kaito C 1985 J. Cryst. Growth 5 64

    Google Scholar 

  36. Ronning C, Shang N G, Gerhards I and Hofsass H 2005 J. Appl. Phys. 98 34307

    Article  Google Scholar 

  37. Wu L, Wu Y, Shi Y and Wei H 2006 Rare Metals 25 68

    Article  CAS  Google Scholar 

  38. Raji R and Gopchandran K G 2017 J. Sci.: Adv. Mater. Devices 2 51

  39. Kishore Kumar K, Brindha R, Nandhini M, Selvam M, Saminathan K and Sakthipandi K 2019 Ionics 1, https://doi.org/10.1007/s11581-019-02924-7

    Article  CAS  Google Scholar 

  40. Elangovan N 2018 J. Surf. Sci. Nanotech. 16 5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, M Selvam, is grateful to the Department of Science and Technology (DST), New Delhi, for providing the INSPIRE fellowship (IF110749) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Selvam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brindha, R., Ajith, S.S.R., Nandhini, M. et al. Evaluation of anticorrosive behaviour of ZnO nanotetra-pods on a AZ91-grade Mg alloy. Bull Mater Sci 42, 221 (2019). https://doi.org/10.1007/s12034-019-1907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1907-0

Keywords

Navigation