A simple solid-state method to synthesize nanosized ferromagnetic \(\upalpha \)-\(\hbox {Fe}_{2}\hbox {O}_{3}\) with enhanced photocatalytic activity in sunlight

  • Madhavi D SheteEmail author
  • Julio B Fernandes


\(\upalpha \)-\(\hbox {Fe}_{2}\hbox {O}_{3}\) was synthesized by preparing a mixture of Fe(III) nitrate with urea as a precursor. The yellowish coloured precursor was calcined at \(400{^{\circ }}\hbox {C}\) for 2 h, resulting in the formation of bright red coloured hematite. The surface properties and catalytic activity were compared with a reference sample prepared without the use of urea. It was observed that urea-induced synthesis resulted in a sample having nanosize and large lattice strain, accompanied by the development of ferromagnetic behaviour. The catalytic activity was evaluated for the decomposition of \(\hbox {H}_{2}\hbox {O}_{2}\) through the photo-Fenton process in sunlight. The urea-synthesized sample showed an usually large photo-Fenton effect and the catalyst could be easily recovered and reused due to its ferromagnetic behaviour.


Hematite ferromagnetism lattice strain photo-Fenton process \(\hbox {H}_{2}\hbox {O}_{2}\) 



One of the authors, Madhavi Shete is grateful to UGC-BSR fellowship for providing student fellowship.


  1. 1.
    Jing X, Haibin Y, Wuyou F, Kai D, Sui Y, Chen J et al 2007 J. Magn. Magn. Mater. 309 744Google Scholar
  2. 2.
    Fang B, Wang F, Zhang W, Li M and Kan X 2005 Electro-analysis 17 744CrossRefGoogle Scholar
  3. 3.
    Gupta A K and Gupta M 2005 Biomaterials 26 3995CrossRefGoogle Scholar
  4. 4.
    Boer C and Dekkers M 2001 Geophys. J. Int. 144 481CrossRefGoogle Scholar
  5. 5.
    Zubov V E, Krinchik G S, Seleznyov V N and Strugatsky M B 1990 J. Magn. Magn. Mater. 86 105CrossRefGoogle Scholar
  6. 6.
    Hernandez F M and Hirt A M 2013 Geochem. Geophys. Geosystem 14 4444CrossRefGoogle Scholar
  7. 7.
    Pinto I S X, Pacheco P, Coelho J V, Lurencon E, Andisson J, Fabris J et al 2012 Appl. Cat. B: Environmental 119 175CrossRefGoogle Scholar
  8. 8.
    Tang L, Tang J, Zang G, Yang G, Xie X, Zhou Y et al 2015 Appl. Surf. Sci. 333 220CrossRefGoogle Scholar
  9. 9.
    Paola A D, Augugliaro V, Palmisano L, Pantaleo G and Savonav E 2003 J. Photochem. Photobiol. A: Chem. 155 207CrossRefGoogle Scholar
  10. 10.
    Yu M, Zhao S and Asuha S 2013 J. Porous Mater. 20 1353CrossRefGoogle Scholar
  11. 11.
    Karunakaran C and Senthilvelan S 2006 Electrochem. Commun. 8 95CrossRefGoogle Scholar
  12. 12.
    Pradhan G K, Padhi D K and Parida K M 2013 ACS Appl. Mater. Interfaces 5 9101CrossRefGoogle Scholar
  13. 13.
    Zhao S, Wu H Y, Song L and Tegus O 2009 J. Mater. Sci. 44 926CrossRefGoogle Scholar
  14. 14.
    Asuha S, Zhao S, Jin X H, Hai M M and Bao H P 2009 Appl. Surf. Sci. 255 8897CrossRefGoogle Scholar
  15. 15.
    Williamson G K and Hall W H 1953 Acta Metall. 1 22CrossRefGoogle Scholar
  16. 16.
    Vempati R K, Loeppert R H and Bhatkar H S 1990 Clays Clay Miner. 38 294CrossRefGoogle Scholar
  17. 17.
    Al-Gaashani R, Radiman S, Tabet N and Daud A R 2015 J. Alloys Compd. 550 395CrossRefGoogle Scholar
  18. 18.
    Mirzaeil A, Janghorban K, Hashemi B, Hosseini S, Bonyani M, Leonardi S G et al 2016 Process. Appl. Ceram. 10 209CrossRefGoogle Scholar
  19. 19.
    Wang C, Liu H and Sun Z 2012 Int. J. Photoenergy 2012 10 Google Scholar
  20. 20.
    Shete M D and Fernandes J B 2015 Mater. Chem. Phys. 165 113CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryGoa UniversityTaleigao PlateauIndia

Personalised recommendations