Skip to main content

Thermal, mechanical and electrical properties of lithium phosphate glasses doped with copper oxide

Abstract

Lithium phosphate glasses with the basic composition (\({\hbox {P}}_{2} {\hbox {O}}_{5}\) 50 and \({\hbox {Li}}_{2} \hbox {O}\) 50 mol%) series by the addition of copper oxide (0, 10, 15 and 20 g/100 g) were prepared by a melt quenching technique. Fourier-transform infrared (FTIR) absorption spectra and X-ray diffraction (XRD) analysis were used to characterize the glass samples. Thermal expansion and mass density were also measured. The different mechanical properties of the prepared glasses were measured by an ultrasonic non-destructive technique. Additionally, both frequency and temperature dependence of alternating-current conductivity were measured in the frequency range of 40 Hz–1 MHz and the temperature range of 308–488 K. Moreover, direct current conductivity was also measured for the same temperature range. FTIR measurements confirm the appearance of the bands of phosphate groups and the assumption of bonds formed between Cu and P. XRD spectra approve the amorphous nature of the studied glasses. Thermal expansion and mass density of the prepared samples show an increase in values by increasing the CuO content. The mechanical properties of the studied glasses (hardness (\(H_{\mathrm{v}}\)), Young’s modulus (E), elastic modulus (L), bulk modulus (K), shear modulus (G) and Poisson’s ratio (\(\nu \))) were positively affected by the CuO content, reflecting a better packed structure. Furthermore, the electrical conductivity values of the prepared glasses are identified to increase with an increase in both temperature and CuO content. Such trends agree with the data obtained by thermal expansion and FTIR. The progressive addition of CuO is assumed to improve thermal, mechanical and electrical properties of the prepared lithium phosphate glasses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Youness R A, Taha M A, El-Kheshen A A, El-Faramawy N and Ibrahim M A 2019 Mater. Res. Express 6 075212

    Article  Google Scholar 

  2. ElBatal H, ElMandouh Z, Zayed H, Marzouk S, Elkomy G and Hosny A 2013 J. Mol. Struct. 57 1054

    Google Scholar 

  3. Dai S, Sugiyama A, Hu L, Liu Z, Huang G and Jiang Z 2002 Non-Cryst. Solids 311 138

    CAS  Article  Google Scholar 

  4. Sharaf El-Deen L M, Al Salhi M S and Elkholy M M 2008 Non-Cryst. Solids 354 5453

    Article  Google Scholar 

  5. Cozar O, Magdas D A and Ardelean I 2008 Non-Cryst. Solids 354 1032

    CAS  Article  Google Scholar 

  6. Metwalli E 2003 Non-Cryst. Solids 317 221

    CAS  Article  Google Scholar 

  7. Elbatal F H 2008 Mater. Sci. 43 1070

    CAS  Article  Google Scholar 

  8. Seydei M K P and Suthanthiraraj S A 1996 Solid State Ion 86 459

    Article  Google Scholar 

  9. Mugoni C, Montorsi M, Siligardi C and Jain H 2014 Non-Cryst. Solids 387 137

    Article  Google Scholar 

  10. Jozwiak P and Garbarczyk J E 2005 Solid State Ion. 176 2163

    CAS  Article  Google Scholar 

  11. Saienga J and Martin S W 2008 Non-Cryst. Solids 354 1475

    CAS  Article  Google Scholar 

  12. Kolar J, Wagner T, Zima V, Stehlik S, Frumarova B, Benes L, et al 2011 Non-Cryst. Solids 357 2223

    CAS  Article  Google Scholar 

  13. Jlassi I, Sdiri N and Elhouichet H 2017 Non-Cryst. Solids 466467 45

    Article  Google Scholar 

  14. Rioux M, Ledemi Y and Messaddeq Y 2017 Non-Cryst. Solids 459 169

    CAS  Article  Google Scholar 

  15. Palui A and Ghosh A 2018 Non-Cryst. Solids 482 230

    CAS  Article  Google Scholar 

  16. Langar A, Sdiri N, Elhouichet H and Ferid M 2017 Results Phys. 7 1022

    Article  Google Scholar 

  17. Aboulfotoha N, Elbasharb Y, Ibrahem M and Elokr M 2014 Ceram. Int. 7 10395

    Article  Google Scholar 

  18. Youness R A, Taha M A, Elhaes H and Ibrahim M 2017 Mater. Chem. Phys. 190 209

    CAS  Article  Google Scholar 

  19. Youness R A, Taha M A and Ibrahim M A 2017 J. Mol. Struct. 1150 188

    CAS  Article  Google Scholar 

  20. Zawrah M F, Taha M A and Abo Mostafa H 2018 Ceram. Int. 44 10693

    CAS  Article  Google Scholar 

  21. Youness R A, Taha M A and Ibrahim M A 2018 Ceram. Int. 44 21323

    CAS  Article  Google Scholar 

  22. Youness R A, Taha M A, El-Kheshen A A and Ibrahim M A 2018 Ceram. Int. 44 20677

    CAS  Article  Google Scholar 

  23. Abo-Naf S M, El-Amiry M S and Abdel-Khalek A A 2008 Opt. Mater. 30 900

    CAS  Article  Google Scholar 

  24. Radhakrishnan A A and Beena B B 2014 Indian Adv. Chem. Sci. 2 158

    CAS  Google Scholar 

  25. Abdelghany A M, ElBatal H A and Marei L K 2012 Radia. Eff. Defects Solids 167 49

    CAS  Article  Google Scholar 

  26. Khalil E M A, ElBatal F H, Hamdy Y M, Zidan M H, Aziz M S and Abdelghany A M 2010 J. Physica B 405 1294

    CAS  Article  Google Scholar 

  27. El Batal H A, Abdelghany A M and Ali I S 2012 J. Non-Cryst. Solids 358 820

    Article  Google Scholar 

  28. Marzouk S Y 2009 Mater. Chem. Phys. 114 188

    CAS  Article  Google Scholar 

  29. Chahine A, Et-tabirou M, Elbenaissi M, Haddad M and Pascal J L 2004 Mater. Chem. Phys. 84 341

    CAS  Article  Google Scholar 

  30. Nabhan E, Nabhan A and Abd El Aal N 2016 Am. J. Phys. Appl. 4 145

  31. Ouis M A, Azooz M A and ElBatal H A 2018 Non-Cryst. Solids 494 31

    CAS  Article  Google Scholar 

  32. Ouis M A, ElBatal H A, Abdelghany A M and Hammad A H 2016 J. Mol. Struct. 1103 224

    CAS  Article  Google Scholar 

  33. Soheyli E and Hekmatshoar M H 2014 Phys. Scr. 89 075801

    Article  Google Scholar 

  34. Halder A, Mandal B, Mahanty S, Sen R and Mandal A K 2017 Bull. Mater. Sci. 40 999

    CAS  Article  Google Scholar 

  35. Mugoni C, Montorsi M, Siligardi C and Jain H 2014 Non-Cryst. Solids 383 137

    CAS  Article  Google Scholar 

  36. Shih P Y, Yung S W and Chin T S 1998 Non-Cryst. Solids 224 143

    CAS  Article  Google Scholar 

  37. Shih P Y, Yung S W and Chin T S 1999 Non-Cryst. Solids 244 211

    CAS  Article  Google Scholar 

  38. Baino F 2018 Ceram. Int. 13 14953

    Article  Google Scholar 

  39. Choudhary B P, Rai S and Singh N B 2016 Ceram. Int. 42 10813

    CAS  Article  Google Scholar 

  40. Choudhary B P 2017 Mater. Today: Proc. 4 5706

    Google Scholar 

  41. Youness R A, Taha M A, Ibrahim M and El-Kheshen A 2018 Silicon 10 1151

    CAS  Article  Google Scholar 

  42. Srivastava A K and Pyare R 2012 Int. J. Sci. Technol. 1 28

    Google Scholar 

  43. Rao G V and Shashikala H D 2014 Glass Phys. Chem. 40 303

    Article  Google Scholar 

  44. Brogliaa G, Mugonib C, Siligardib C and Montorsi M 2018 Non-Cryst. Solids 481 522

    Article  Google Scholar 

  45. Cho K I, Lee S H, Shin D W and Sun Y K 2006 Electrochim. Acta 52 1576

    CAS  Article  Google Scholar 

  46. Swenson J and Borjesson L 1996 Phys. Rev. Lett. 77 3569

    CAS  Article  Google Scholar 

  47. Milanković A M, Pavić L, Reis S T, Day D E and Ivanda M 2010 J. Non-Cryst. Solids 356 715

    Article  Google Scholar 

  48. Khoon T F, Hassan J, Wahab Z A and Azis R S 2016 Results Phys. 19 2081

    Google Scholar 

  49. Murawski L, Chung C H and Mackenize J D 1979 J. Non-Cryst. Solids 32 91

    CAS  Article  Google Scholar 

  50. Shapaan M, ElBadry S A, Mostafa A G, Hassaan M Y and Hazzaa M H 2012 Phys. Chem. Solids 73 407

    CAS  Article  Google Scholar 

  51. Karmakar B, Rademann K and Stepanov A 2016 Ch.1 (Amsterdam 3: Elsevier B.V.) 3 53

  52. Muralidharan P, Satyanarayana N and Venkateswarlu M 2005 Phys. Chem. Glasses 46 293

    CAS  Google Scholar 

  53. Farid A M and Bekheet A E 2000 Vacuum 59 932

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A Taha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouis, M.A., Taha, M.A., El-Bassyouni, G.T. et al. Thermal, mechanical and electrical properties of lithium phosphate glasses doped with copper oxide. Bull Mater Sci 42, 246 (2019). https://doi.org/10.1007/s12034-019-1897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1897-y

Keywords

  • Lithium phosphate glass
  • copper oxide
  • thermal expansion
  • mechanical properties
  • electrical properties