Skip to main content
Log in

Investigation of erosion behaviour of an iron-mud filled glass-fibre epoxy hybrid composite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Iron-mining and ore processing (mainly laterite) are faced with the major challenge of generated overburden and topsoil aggregates (iron-mud) as a major solid waste. Storage and reclamation are two severe problems with harmful environmental concerns. The present paper investigates the possible uses of iron mine waste for developing a new-class hybrid polymer composite and its tribological characteristics. The polymer composites are fabricated through a hand-layup process by reinforcement of woven glass fibres in an epoxy polymer filled with different weight proportions of iron-mud. Erosion wear experiments were conducted on the fabricated composites according to a Box–Behnken design approach using an air jet-type erosion tester. The artificial neural network predicted values which exhibited close relationship with the experimental erosion values. Filler addition resulted in an improvement in the erosion resistance. A meta-heuristic approach like particle swarm optimization reveals the minimum erosion value at an optimal parametric combination. Finally, the morphology of eroded surfaces was critically examined by scanning electron microscopy and possible erosion mechanisms were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pani B, Chandrasekhar P and Singh S 2018 IOP Conference Series: Materials Science and Engineering 455 012068

    Article  Google Scholar 

  2. BRGM 2001 RP-50319-FR, p 79

  3. Kumar V, Jadhav G, Dutta D, Manna S, Rao S and Shetty S 2003 International seminar on mineral processing technology (MPT) (POSTER), Panjim, Goa, 6–8 February

  4. Juwarkar A, Singh S, Dubay K and Nimje M 2003 Presented in national seminar on status of environmental management in mining industry, BHU, p 197

  5. IBM, Indian Minerals Year Book, Indian Bureau of Mines, Ministry of Mines, Government of India, Issued by Controller General; 2002 35 11-6; 76 23-4

  6. Skarzyńska K M 1995 Waste Manage. 15 83

    Article  Google Scholar 

  7. Leininger D, Erdmann W, Kohling R, Petry R and Schieder T 1983 Syrup on the utilize of waste from coal mining and preparation, Tatabanya, Hungary 22

  8. Berthe M N 1984 1st Int. syrup on reclamation, treatment and utilization of coal mining wastes, p 6.1–6.15

  9. Yellishetty M, Karpe V, Reddy E H, Subhash K N and Ranjith P G 2008 Resour. Conserv. Recycl. 52 1283

    Article  Google Scholar 

  10. Pati P R, Satpathy M P and Satapathy A 2017 Polym. Composhttps://doi.org/10.1002/pc.24434

    Article  Google Scholar 

  11. Onitiri M A and Akinlabi E T 2017 Mech. Compos. Mater. 52 817

    Article  CAS  Google Scholar 

  12. Pani B, Chandrasekhar P and Singh S 2018 Polym. Composhttps://doi.org/10.1002/pc.24882

    Article  Google Scholar 

  13. Tsuda K, Kubouchi M, Sakai T, Saputra A H and Mitomo N 2006 Wear 260 1045

    Article  CAS  Google Scholar 

  14. Wahl H and Hartenstein F 1946 Strahlverschleiss (Stuttgart: Frankh’sche Verlagshandlung)

    Google Scholar 

  15. Bitter J G A 1963 Wear 6 169

    Article  Google Scholar 

  16. Raask E 1969 Wear 13 301

    Article  Google Scholar 

  17. Hibbert W A and Roy M 1965 J. Aeronaut. Soc. 69 769

  18. Pool K V, Dharan C K H and Finnie I 1986 Wear 107 1

    Article  CAS  Google Scholar 

  19. Kulkarni S M and Kishore K 2001 Polym. Polym. Compos. 9 25

    CAS  Google Scholar 

  20. Pani B, Chandrasekhar P and Singh S 2018 Mater. Today Proc., https://doi.org/10.1016/j.matpr.2018.10.022

    Google Scholar 

  21. Ruff A W and Ives L K 1975 Wear 35 195

    Article  Google Scholar 

  22. Biswas S and Satapathy A 2010 Tribol. Trans. 53 520

    Article  CAS  Google Scholar 

  23. Biswas S and Satapathy A 2009 Mater. Des. 30 2841

    Article  CAS  Google Scholar 

  24. Patnaik A, Satapathy A, Mahapatra S S and Dash R R 2008 J. Reinf. Plast. Compos. 27 1093

    Article  CAS  Google Scholar 

  25. Rout A, Satapathy A, Mantry S, Sahoo A and Mohanty T 2012 Procedia. Eng. 38 1863

    Article  CAS  Google Scholar 

  26. Srivastava V K and Pawar A G 2006 Compos. Sci. Technol. 66 3021

    Article  CAS  Google Scholar 

  27. Biswas S and Satapathy A 2010 Waste Manag. Res. 28 615

    Article  CAS  Google Scholar 

  28. Miyazaki N and Takeda N 1993 J. Compos. Mater. 27 21

    Article  CAS  Google Scholar 

  29. Tilly G P and Sage W 1970 Wear 16 447

    Article  Google Scholar 

  30. Barkoula N M and Karger-Kocsis J 2002 Wear 252 80

    Article  CAS  Google Scholar 

  31. Satapathy A, Patnaik A and Pradhan M K 2009 Mater. Des. 30 2359

  32. Mahapatra S S, Patnaik A and Satapathy A 2008 Wear 265 214

    Article  CAS  Google Scholar 

  33. More S R, Bhatt D V and Menghani J V 2017 Mater. Today Proc. 4 257

  34. Blanco M, Corcuera M A, Riccardi C C and Mondragon I 2005 Polymer 46 7989

    Article  CAS  Google Scholar 

  35. Delor-Jestin F, Drouin D, Cheval P Y and Lacoste J 2006 Polym. Degrad. Stab. 91 1247

    Article  CAS  Google Scholar 

  36. Kalogeras I M, Vassilikou-Dova A, Christakis I, Pietkiewicz D and Brostow W 2006 Macromol. Chem. Phys. 207 879

    Article  CAS  Google Scholar 

  37. Maity T, Samanta B C, Dalai S and Banthia A K 2007 Mater. Sci. Eng. A 464 38

    Article  Google Scholar 

  38. G76-13 2013 Standard test method for conducting erosion tests by solid particle impingement using gas jets (West Conshohocken, PA: ASTM International)

  39. Amenaghawon N, Nwaru K I, Aisien F, Ogbeide S E and Okieimen C O 2013 Br. Biotechnol. J. 3 236

    Article  Google Scholar 

  40. Nayak R K, Mahato K K, Routara B C and Ray B C 2016 J. Appl. Polym. Sci. 47 133

  41. Rostamiyan Y, Fereidoon A, Mashhadzadeh A H, Ashtiyani M R and Salmankhani A 2015 Compos. B: Eng. 69 304

  42. Sundararajan G, Roy M and Venkataraman B 1990 Wear 140 369

    Article  CAS  Google Scholar 

  43. Lindsley B A and Marder A R 1999 Wear 225–229 510

    Google Scholar 

  44. Chen Q and Li D Y 2003 Wear 254 203

    Article  CAS  Google Scholar 

  45. John Rajesh J, Bijwe J, Venkataraman B and Tewari U S 2004 Tribol. Int. 37 219

    Article  Google Scholar 

  46. López D, Congote J P, Cano J R, Toro A and Tschiptschin A P 2005 Wear 259 118

    Article  Google Scholar 

  47. Arjula S and Harsha A P 2006 Polym. Test. 25 188

    Article  CAS  Google Scholar 

  48. Roy M, Vishwanathan B and Sundararajan G 1994 Wear 171 149

    Article  CAS  Google Scholar 

  49. Clerc M 2006 Particle swarm optimization (London, UK: ISTE)

  50. Olsson A E 2011 Particle swarm optimization: theory, techniques and applications (Commack, NY, USA: Nova Science Publishers, Inc.)

  51. Panigrahi B K, Shi Y and Lim M H (eds) 2011 Handbook of swarm intelligence vol 8 (Berlin, Heidelberg: Springer)

  52. Chatterjee A and Siarry P 2006 Comput. Oper. Res. 33 859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Chandrasekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pani, B., Chandrasekhar, P. & Singh, S. Investigation of erosion behaviour of an iron-mud filled glass-fibre epoxy hybrid composite. Bull Mater Sci 42, 217 (2019). https://doi.org/10.1007/s12034-019-1894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1894-1

Keywords

Navigation