Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant

  • Ammar Mahmoud Al-HusseiniEmail author
  • Bashar Lahlouh


Surface texturing of p-type monocrystalline silicon (100) is well known as one of the best methods to reduce reflection losses and to increase light trapping and light absorption probability. Pyramid surface textures play a major role in reducing the reflectance of monocrystalline silicon surfaces. In this paper, the size of pyramids formed on the surface of p-type silicon substrates and by changing the etching characteristics during the texturing process of silicon were studied and evaluated. The pyramids that formed on the crystalline silicon surface formed light traps that led to increased light absorption efficiency. The pyramid size effects on the percent reflectivity were evaluated at normal incidence and an inverse relationship between the percent reflectivity and the pyramid size was found. The size of the pyramids was controlled by controlling the texturing process by changing the concentrations of potassium hydroxide (KOH) and isopropyl alcohol (IPA) and by controlling the etching process time. In this work, the optimized etching conditions were determined as a solution prepared with 20 wt% KOH and 3 wt% IPA for wet etching at a reaction temperature of \(80^{\circ }\hbox {C}\) and an etching time of 40 min. The lowest value for percent reflectivity of the patterned surfaces was 9.7% and it was achieved for pyramid bases close to \(4~\upmu \hbox {m}\) as measured at a wavelength of 650 nm.


Pyramid structure surface morphology light trapping reflectivity spectral reflectivity surface modification 


  1. 1.
    Svetoslav K, Martin S B and Martin S 2006 Appl. Phys. Lett. 88 203107CrossRefGoogle Scholar
  2. 2.
    Gangopadhyay U, Kim K, Dhungel S K, Basu P K and Yi J 2006 Renew. Energy 31 1906CrossRefGoogle Scholar
  3. 3.
    Sparber W, Schultz O, Biro D, Emanuel G, Preu R, Poddey A et al 2003 Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan) p 1372Google Scholar
  4. 4.
    Deng T, Chen J, Wu C N and Liu Z W 2013 ECS J. Solid State Sci. Technol. 2 419CrossRefGoogle Scholar
  5. 5.
    Xiao J, Wang L, Li X, Pi X and Yang D 2010 Appl. Surf. Sci. 257 472CrossRefGoogle Scholar
  6. 6.
    Rola K, Ptasinski K, Zakrzewski A and Zubel I 2014 Microsyst. Technol. 20 221CrossRefGoogle Scholar
  7. 7.
    Indermun S, Luttge R, Choonara Y E, Kumar P, du Toit L C, Modi G et al 2014 J. Control. Release 185 130CrossRefGoogle Scholar
  8. 8.
    Herwik S, Kisban S, Aarts A, Seidl K, Girardeau G, Benchenane K et al 2009 J. Micromech. Microeng. 19 074008CrossRefGoogle Scholar
  9. 9.
    Yan L, Arnab D, Ziyin L, Ian B C, Ajeet R I and Wong C P 2014 Nano Energy 3 127CrossRefGoogle Scholar
  10. 10.
    Sievert W, Zimmermann K U, Hartmann B, Klimm C, Jacob K and Angermann H 2009 Solid State Phenomena 145 223CrossRefGoogle Scholar
  11. 11.
    Baker-Finch S and McIntosh K 2011 Prog. Photovolt. Res. Appl. 19 406CrossRefGoogle Scholar
  12. 12.
    Hongjie L, Honglie S, Ye J, Chao G, Han Z and Jiren Y 2012 Appl. Surf. Sci. 258 5451CrossRefGoogle Scholar
  13. 13.
    Vazsonyi E, De Clercq K, Einhaus R, Van Kerschaver E, Said K, Poortmans J et al 1999 Energy Mater. Sol. Cells 57 179CrossRefGoogle Scholar
  14. 14.
    Jose N X 2013 PhD Thesis (Faculty of Sciences, Department of Physics, Konstanz)Google Scholar
  15. 15.
    Keith R M and Luke P J 2009 J. Appl. Phys. 105 124520CrossRefGoogle Scholar
  16. 16.
    Park S H, Park J, You K H, Shin H C and Kim H O 2012 J. Occup. Health 55 120Google Scholar
  17. 17.
    Zubel I and Kramkowska M 2001 Sens. Actuators A Phys. 93 138CrossRefGoogle Scholar
  18. 18.
    Drago R, Vrtacnik D, Aljancic U and Amon S 2003 J. Micromech. Microeng. 13 26CrossRefGoogle Scholar
  19. 19.
    Tiago S M, Pamakstys K, Luis M G, Graça M and Susana C 2015 Micromachines 6 1534CrossRefGoogle Scholar
  20. 20.
    Yaqin W, Ruizhi L, Junjun M and Shi-Qing M 2015 5th International Conference on Advanced Engineering Materials and Technology Google Scholar
  21. 21.
    Jinsu Y, Junsik C, Kyumin H et al 2012 J. Korean Phys. Soc. 60 2071CrossRefGoogle Scholar
  22. 22.
    Park H, Kwon S, Lee J S et al 2009 Sol. Energy Mater. Sol. Cells 93 1773CrossRefGoogle Scholar
  23. 23.
    Charanpreet S, Vijay K, Kiran W and Sood S C 2012 Int. J. Comput. Sci. Commun. Tech. 5 974Google Scholar
  24. 24.
    Sarro P M, Bride D, Vlist W V and Bride S 2000 Sens. Actuators 85 340CrossRefGoogle Scholar
  25. 25.
    Singh P K, Kumar R, Lal M, Singh S N and Das B K 2001 Energy Mater. Sol. Cells 70 103CrossRefGoogle Scholar
  26. 26.
    Kyu M H and Jin S 2014 J. Korean Phys. Soc. 64 1132CrossRefGoogle Scholar
  27. 27.
    Al-Husseini A M and Lahlouh B 2017 J. Appl. Sci. 17 1812Google Scholar
  28. 28.
    Krzysztof P R and Zubel I 2013 Microsyst. Technol. 19 635CrossRefGoogle Scholar
  29. 29.
    Jan K, Heike A, Uta S and Bert S 2013 Energy Proc. 38 833CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of JordanAmmanJordan

Personalised recommendations