Skip to main content
Log in

Entropy analysis of Hall current and thermal radiation influenced by cilia with single- and multi-walled carbon nanotubes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The present investigation explores the significance of creeping viscous nanofluids in an axi-symmetric channel influenced by metachronal waves containing magnetohydrodynamics and Hall current. Heat transport analysis is also performed to derive the impact of thermal radiation on internal heat source phenomena. The use of mathematical formulation resulted in a set of nonlinear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering similar variables. Exact solutions in the closed form have been derived for the temperature, momentum and pressure gradient. Moreover, entropy generation due to heat transfer, thermal radiation and magnetic effects has been measured. The graphical results have been presented to interpret sundry parameters of interest. Streamlines and isotherms are also plotted against the multi-walled carbon nanotube. For the validation of our results, a comparison table is presented. It is also seen that entropy of the system increases and the Bejan number decreases with an increase in the Brinkman number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Iijima S 1991 Nature 354 568

    Article  Google Scholar 

  2. Baughman R H, Zakhidov A A and Heer De W A 2002 Science 297 787

    Article  CAS  Google Scholar 

  3. Fu C F and Gu L X 2013 J. Appl. Polym. Sci. 128 1044

    Article  CAS  Google Scholar 

  4. Lin T C and Huang B R 2013 Sens. Actuators B: Chem. 185 548

    Article  CAS  Google Scholar 

  5. Jeong H, Gweon H M, Kwon B J, Ahn Y H and Park J Y 2009 Nanotechnology 20 223101

    Google Scholar 

  6. Lee J, Liao A, Pop E and King W P 2009 Nano Lett. 9 1356

    Article  CAS  Google Scholar 

  7. Cheon J H, Lim J, Seo S M, Woo J M, Kim S H and Kwon Y 2010 IEEE Trans. Electron. Dev. 57 2684

    Article  CAS  Google Scholar 

  8. Wang H F, Muren N B, Ordinario D, Gorodetsky A A, Barton J K and Nuckolls 2012 Chem. Sci. F 3 62

    Article  CAS  Google Scholar 

  9. Silambarasan D, Urya V J, Vasu V and Iyakutti K 2013 Int. J. Hydrog. Energy 38 4011

    Article  CAS  Google Scholar 

  10. Chen L, Xia K S, Huang L Z, Li L W, Pei L B and Fei S X 2013 Int. J. Hydrog. Energy 38 3297

    Article  CAS  Google Scholar 

  11. Liu D, Wang Z G, Wang L J and Cuschieri A 2012 J. Med. Imag. Health In. 2 132

    Google Scholar 

  12. Vozzi G, Corallo C and Daraio C 2013 J. Appl. Polym. Sci. 129 528

    Article  CAS  Google Scholar 

  13. Liao C Z, Li K, Wong H M, Tong W Y, Yeung K W K and Tjong S C 2013 Mater. Sci. Eng. C: Mater. Biol. Appl. 33 1380

    Article  CAS  Google Scholar 

  14. Makinde O D and Aziz A 2011 Int. J. Therm. Sci. 50 1326

    Article  CAS  Google Scholar 

  15. Abrar M N, Rizwan Ul H, Awais M and Rashid I 2017 Nucl. Eng. Technol. 49 1680

    Article  CAS  Google Scholar 

  16. Abrar M N and Awais M 2018 J. Comput. Theor. Nanosci. 15 1373

    Article  CAS  Google Scholar 

  17. Manna O, Singh K S and Gayatri P 2012 Bull. Mater. Sci. 35 5

    Article  Google Scholar 

  18. Kamran A, Hussain S, Sagheer M and Akmal N 2017 Results Phys. 7 3037

  19. Barletta A S, Lazzari E, Magyari and Pop I 2008 Int. J. Heat Mass Tran. 51 57

    Google Scholar 

  20. Hussain S, Ahmed S E and Akbar T 2017 Int. J. Heat Mass Tran. 114 1054

    Article  CAS  Google Scholar 

  21. Rashidi M M, Mohimanian S A and Abbasbandy S 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1874

    Article  Google Scholar 

  22. Turkyilmazoglu M and Pop I 2013 Int. J. Heat Mass Tran. 59 167

    Article  CAS  Google Scholar 

  23. Das S and Jana R N 2015 Alexandria Eng. J. 54 55

    Article  Google Scholar 

  24. Sheikholeslami M, Gorji M, Ellahi R and Zeeshan A 2014 J. Magn. Magn. Mater. 369 69

  25. Patel H E, Anoop K B, Sundararajan T and Sarit K D 2008 Bull. Mater. Sci. 31 387

    Article  CAS  Google Scholar 

  26. Akmal N, Sagheer M and Hussain S 2018 AIP Adv. 8 055201

    Article  Google Scholar 

  27. Abrar M N, Sagheer M and Hussain S 2019 J. Nanofluids 8 1

    Article  Google Scholar 

  28. Sucharitha G, Vajravelu K, Sreenadh S and Lakshminarayana P 2017 IOP Conf. Series: Mater. Sci. Eng. 263 062026

    Article  Google Scholar 

  29. Bejan A 1979 J. Heat Transf. 101 718

    Article  Google Scholar 

  30. Akbar N S and Butt A W 2014 Eur. Phys. J. Plus 129 174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M N Abrar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrar, M.N., Sagheer, M. & Hussain, S. Entropy analysis of Hall current and thermal radiation influenced by cilia with single- and multi-walled carbon nanotubes. Bull Mater Sci 42, 250 (2019). https://doi.org/10.1007/s12034-019-1822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1822-4

Keywords

Navigation