Skip to main content
Log in

Substrate free synthesis of graphene nanoflakes by atmospheric pressure chemical vapour deposition using Ni powder as a catalyst

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Graphene nanoflakes (GNFs) were synthesized by atmospheric pressure chemical vapour deposition of propane (\(\hbox {C}_{3}\hbox {H}_{8})\) employing Ni (salen) powder without the introduction of a substrate. The graphitic nature of the GNFs was examined by an X-ray diffraction method. Scanning electron microscopy results revealed that GNFs were stacked on top of one another and had a high aspect ratio. Transmission electron microscopy studies suggested that the GNFs were made up of a number of crystalline graphene layers, some of which were even single crystalline as evident from the selected area diffraction pattern. Finally, Raman spectroscopy confirmed the high quality of the GNFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  2. Westervelt R M 2008 Science 320 324

    Article  CAS  Google Scholar 

  3. Pumera M 2011 Energy Environ. Sci. 4 668

    Article  CAS  Google Scholar 

  4. Justino C I L, Gomes A R, Freitas A C et al 2017 Trends Anal. Chem. 91 53

    Article  CAS  Google Scholar 

  5. Novoselov K S, Geim A K, Morozov S V et al 2004 Science 306 666

    Article  CAS  Google Scholar 

  6. Ciesielski A and Samorì P 2014 Chem. Soc. Rev. 43 381

    Article  CAS  Google Scholar 

  7. Mishra N, Boeckl J, Motta N et al 2016 Phys. Status Solidi (a) 213 2277

    Article  CAS  Google Scholar 

  8. Wang X, You H, Liu F et al 2009 Chem. Vapor Depos. 15 53

    Article  CAS  Google Scholar 

  9. Tetlow H, Boer J P, Ford I J et al 2014 Phys. Rep. 542 195

    Article  CAS  Google Scholar 

  10. Chen W, Yan L and Bangal P R 2010 J. Phys. Chem. C 114 19885

    Article  CAS  Google Scholar 

  11. Qaisi R M, Smith C E and Hussain M M 2014 Phys. Status Solidi RRL 8 621

    Article  CAS  Google Scholar 

  12. Wang S, Hibino H, Suzuki S et al 2016 Chem. Mater. 28 4893

    Article  CAS  Google Scholar 

  13. Nguyen V T, Le H D, Nguyen V C et al 2013 Adv. Nat. Sci: Nanosci. Nanotechnol. 4 035012

    Google Scholar 

  14. Zhang Y, Gomez L, Ishikawa F N et al 2010 J. Phys. Chem. Lett. 1 3101

    Article  CAS  Google Scholar 

  15. Fogarassya Z, Rümmeli M H, Gorantla S et al 2014 Appl. Surf. Sci. 314 490

    Article  CAS  Google Scholar 

  16. Reina A, Jia X, Ho J et al 2009 Nano Lett. 9 30

    Article  CAS  Google Scholar 

  17. Reina A, Thiele S, Jia X et al 2009 Nano Res. 2 509

    Article  CAS  Google Scholar 

  18. Avouris P and Dimitrakopoulos C 2012 Mater. Today 15 86

    Article  CAS  Google Scholar 

  19. Losurdo M, Giangregorio M M, Capezzuto P et al 2011 Phys. Chem. Chem. Phys. 13 20836

    Article  CAS  Google Scholar 

  20. Sun Y, Yang L, Xia K et al 2018 Adv. Mater. 30 1803189

  21. Malesevic A, Vitchev R, Schouteden K et al 2008 Nanotechnology 19 305604

    Article  CAS  Google Scholar 

  22. Bo Z, Yang Y, Chen J et al 2013 Nanoscale 5 5180

    Article  CAS  Google Scholar 

  23. Shang N G, Papakonstantinou P, McMullan M et al 2008 Adv. Funct. Mater. 18 3506

    Article  CAS  Google Scholar 

  24. Yoon S M, Choi W M, Baik H et al 2012 ACS Nano 6 6803

  25. Soin N, Roy S S, O’Kane C et al 2011 CrystEngComm 13 312

    Article  CAS  Google Scholar 

  26. Meyer J C, Kisielowski C, Erni R et al 2008 Nano Lett. 8 3582

    Article  CAS  Google Scholar 

  27. Caņado L G, Takai K, Enoki T et al 2006 Appl. Phys. Lett. 88 163106

    Article  CAS  Google Scholar 

  28. Marchena M, Song Z, Senaratne W et al 2017 2D Mater. 4 025088

    Article  CAS  Google Scholar 

  29. Natesan K and Kassner T F 1973 Metall. Trans. 4 2557

    Article  CAS  Google Scholar 

  30. Seah C M, Chai S P and Mohamed A R 2014 Carbon 70 1

    Article  CAS  Google Scholar 

  31. Li X, Cai W, Colombo L et al 2009 Nano Lett. 9 4268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, Department of Science & Technology, India, under project number (SR/FTP/PS-120/2012) and (SB/S2/CMP-099/2013). We are grateful to Dr A Singha from the Department of Physics, Bose Institute, for his help with Raman spectroscopy. We would also like to thank Dr P Majhi from the Department of Polymer and Process Engineering, IIT Roorkee, for his help with SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydip Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, J., Das, K., Nandi, U.N. et al. Substrate free synthesis of graphene nanoflakes by atmospheric pressure chemical vapour deposition using Ni powder as a catalyst. Bull Mater Sci 42, 136 (2019). https://doi.org/10.1007/s12034-019-1818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1818-0

Keywords

Navigation