Skip to main content
Log in

Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Catalytic degradation of textile dyes in diluted aqueous solutions with minimal consumption of energy is a great challenge for wastewater treatment and environmental protection. Efficient heterogeneous catalysts are needed to completely oxidize azo-dyes under soft conditions. In this work, catalysts of Cu–Co oxide (1:2 molar ratio) supported on halloysite (Ha) nanotubes (CuCo(5%)/Ha and CuCo(10%)/Ha) were synthesized and used in the catalytic wet peroxide oxidation of reactive yellow 145 (RY-145) and basic red 46 (BR-46). The catalysts were characterized by chemical analysis, X-ray diffraction, Raman spectroscopy, \(\hbox {N}_{2}\) adsorption isotherms, scanning electron microscopy and transmission electron microscopy. The results showed that the synthesized catalysts possess nanotubular structure with good mesoporosity, and the spinel structure \(\hbox {CuCo}_{2}\hbox {O}_{4}\) was identified as the active phase deposited on Ha. The catalysts degraded these azo-dyes in diluted solutions (\(22\, \hbox {mg l}^{-1}\) of RY-145 and \(35\, \hbox {mg l}^{-1}\) of BR-46) under mild reaction conditions (\(25^{\circ }\hbox {C}\), atmospheric pressure, pH 4 and minimum amounts of both catalyst and \(\hbox {H}_{2}\hbox {O}_{2})\). Significant levels of dye conversion (\(93.1\pm 2.2\%\) for RY-145 and \(54.4 \pm 2.0\%\) for BR-46) were achieved in a relatively short time. In addition, significant values of total organic carbon removal (\(59.5 \pm 1.8\%\) for RY-145 and \(33.9 \pm 1.4\%\) for BR-46) were obtained, indicating the total oxidation of a significant fraction of these dyes to \(\hbox {CO}_{2}\) and \(\hbox {H}_{2}\hbox {O}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdel-Raouf N, Al-Homaidan A A and Ibraheem I B M 2012 Saudi J. Biol. Sci. 19 257

    Article  CAS  Google Scholar 

  2. Torres-Luna J A, Carriazo J G and Sanabria N R 2016 Environ. Technol. 37 1346

    Article  CAS  Google Scholar 

  3. Zaharia C and Suteu D 2012 in Puzyn T (ed.) Organic pollutants ten years after the Stockholm convention environmental and analytical update (Croatia: InTech Europe) p 55

  4. Gómez M J, Pazos F, Guijarro F J, de Lorenzo V and Valencia A 2007 Mol. Syst. Biol. 3 1

    Article  CAS  Google Scholar 

  5. Alves de Lima R O, Bazo A P, Salvadori D M F, Rech C M, de Palma Oliveira D and de Aragão Umbuzeiro G 2007 Mutat. Res. Genet. Toxicol. Environ. Mutagen. 626 53

    Article  CAS  Google Scholar 

  6. Bouatay F, Dridi-Dhaouadi S, Drira N and Farouk Mhenni M 2016 Desalin. Water Treat. 57 13561

    Article  CAS  Google Scholar 

  7. Byberg R, Cobb J, Diez Martin L, Thompson R W, Camesano T, Zahraa O et al 2013 Environ. Sci. Pollut. Res. 20 3570

    Article  CAS  Google Scholar 

  8. Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M and Barzegar G 2018 J. Mol. Liq. 256 462

    Article  CAS  Google Scholar 

  9. Demir N, Gündüz G and Dükkancı M 2015 Environ. Sci. Pollut. Res. 22 3193

    Article  CAS  Google Scholar 

  10. Natarajan S, Bajaj H C and Tayade R J 2018 J. Environ. Sci. 65 201

    Article  Google Scholar 

  11. Balapure K, Bhatt N and Madamwar D 2015 Bioresour. Technol. 175 1

    Article  CAS  Google Scholar 

  12. de Souza S M, Bonilla K A S and de Souza A A U 2010 J. Hazard. Mater. 179 35

    Article  CAS  Google Scholar 

  13. Ong S-A, Uchiyama K, Inadama D, Ishida Y and Yamagiwa K 2010 Bioresour. Technol. 101 9049

    Article  CAS  Google Scholar 

  14. Zollinger H 2003 Color chemistry: syntheses, properties, and applications of organic dyes and pigments (Zurich: Wiley-VCH)

    Google Scholar 

  15. Gül Ş and Özcan-Yıldırım Ö 2009 Chem. Eng. J. 155 684

    Article  CAS  Google Scholar 

  16. Patil N N and Shukla S R 2015 J. Water Process. Eng. 7 314

    Article  Google Scholar 

  17. Parvaresha V, Hashemib H, Khodabakhshic A and Sedehid M 2018 Desalin. Water Treat. 111 345

    Article  CAS  Google Scholar 

  18. Caner N, Kiran I, Ilhan S, Pinarbasi A and Iscen C F 2011 Sep. Sci. Technol. 46 2283

    CAS  Google Scholar 

  19. Abd El-Rahim W, Moawad H, Abdel Azeiz A and Sadowsky M 2017 J. Biotechnol. 260 11

    Article  CAS  Google Scholar 

  20. Fahimirad B, Asghari A and Rajabi M 2017 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 179 58

    Article  CAS  Google Scholar 

  21. Fu J and Kyzas G Z 2014 Chinese J. Catal. 35 1

    Article  CAS  Google Scholar 

  22. Ghuge S P and Saroha A K 2018 J. Water Process. Eng. 23 217

    Article  Google Scholar 

  23. Bouafia-Chergui S, Oturan N, Khalaf H and Oturan M A 2010 J. Environ. Sci. Health, A: Toxic/Hazard. Subst. Environ. Eng. 45 622

  24. Dong J, Dong H, Han L, Fu B, Chen Y and Zhan Y 2015 Desalin. Water Treat. 56 1056

    Article  CAS  Google Scholar 

  25. Baloyi J, Ntho T and Moma J 2018 RSC Adv. 8 5197

    Article  CAS  Google Scholar 

  26. Bokare A D and Choi W 2014 J. Hazard. Mater. 275 121

    Article  CAS  Google Scholar 

  27. Bao X, Qin Z, Zhou T and Deng J 2018 J. Environ. Sci. 65 236

    Article  Google Scholar 

  28. Reza K M, Kurny A and Gulshan F 2016 Int. J. Environ. Sci. Technol. 7 325

    CAS  Google Scholar 

  29. Covinich L G, Massa P, Fenoglio R J and Area M C 2016 Crit. Rev. Environ. Sci. Technol. 46 1745

    Article  CAS  Google Scholar 

  30. Munoz M, de Pedro Z M, Casas J A and Rodriguez J J 2015 Appl. Catal. B: Environ. 176–177 249

    Article  CAS  Google Scholar 

  31. Vela-Monroy C A, Saavedra-Alemán M J and Carriazo-Baños J G 2016 Tecno Lógicas 19 13

    Article  Google Scholar 

  32. Wang N, Zheng T, Zhang G and Wang P 2016 J. Environ. Chem. Eng. 4 762

    Article  CAS  Google Scholar 

  33. Yu C, Li G, Wei L, Fan Q, Shu Q and Yu J C 2014 Catal. Today 224 154

    Article  CAS  Google Scholar 

  34. Liu S, Gu Y, Wang S, Zhang Y, Fang Y, Johnson D M et al 2013 Chin. Sci. Bull. 58 2340

    Article  CAS  Google Scholar 

  35. Carriazo J G, Bossa-Benavides L F and Castillo E 2012 Quím. Nova 35 1101

    Article  CAS  Google Scholar 

  36. Carrillo A M and Carriazo J G 2015 Appl. Catal. B: Environ. 164 443

    Article  CAS  Google Scholar 

  37. Molano W A, Cárdenas J C, Sierra C A, Carriazo J G and Ochoa-Puentes C 2018 ChemistrySelect 3 4430

    Article  CAS  Google Scholar 

  38. Carrillo A M, Urruchurto C M, Carriazo J G, Moreno S and Molina R A 2014 Rev. Mex. Ing. Quím. 13 563

    CAS  Google Scholar 

  39. Nath N C D, Debnath T, Kim E-K, Ali Shaikh M A and Lee J-J 2018 Electrochim. Acta 273 474

    Article  CAS  Google Scholar 

  40. Palacios-Hernández T, Hirata-Flores G A, Contreras-López O E, Mendoza-Sánchez M E, Valeriano-Arreola I, González-Vergara E et al 2012 Inorg. Chim. Acta 392 277

    Article  CAS  Google Scholar 

  41. Ercolino G, Grodzka A, Grzybek G, Stelmachowski P, Specchia S and Kotarba A 2017 Top. Catal. 60 333

    Article  CAS  Google Scholar 

  42. Liu Z-Q, Xiao K, Xu Q-Z, Li N, Su Y-Z, Wang H-J et al 2013 RSC Adv. 3 4372

    Article  CAS  Google Scholar 

  43. Silambarasan M, Padmanathan N, Ramesh P and Geetha D 2016 Mater. Res. Express 3 1

    Article  CAS  Google Scholar 

  44. Alvarez A, Ivanova S, Centeno M A and Odriozola J A 2012 Appl. Catal. A: Gen. 431–432 9

  45. Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J et al 2015 Pure Appl. Chem. 87 1051

    Article  CAS  Google Scholar 

  46. Tartaj P, Morales M P, Gonzalez-Carreño T, Veintemillas-Verdaguer S and Serna C J 2011 Adv. Mater. 23 5243

    Article  CAS  Google Scholar 

  47. Carriazo J G, Molina R and Moreno S 2008 Appl. Catal. A 334 168

    Article  CAS  Google Scholar 

  48. Carriazo J G, Guélou E, Barrault J, Tatibouet J M, Molina R and Moreno S 2005 Catal. Today 107–108 126

    Article  CAS  Google Scholar 

  49. Garrido-Ramirez E G, Sivaiah M V, Barrault J, Valange S, Theng B K G, Ureta-Zañartu M S et al 2012 Microporous Mesoporous Mater. 162 189

    Article  CAS  Google Scholar 

  50. Song S, Xu X, Xu L, He Z, Ying H, Chen J et al 2008 Ind. Eng. Chem. Res. 47 1386

    Article  CAS  Google Scholar 

  51. Alahiane S, Qourzal S, El-Ouardi M, Abaamrane A and Assabbane A 2014 Am. J. Anal. Chem. 5 445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Universidad Nacional de Colombia for supplying the resources for this scientific research. This work was developed in the Lab-DRES (Laboratorio de Diseño y Reactividad de Estructuras Sólidas, UN-Bogotá), and at the Engineering and Architecture Faculty (UN-Manizales).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José G Carriazo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Luna, J.A., Giraldo-Gómez, G.I., Sanabria-González, N.R. et al. Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite. Bull Mater Sci 42, 137 (2019). https://doi.org/10.1007/s12034-019-1817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1817-1

Keywords

Navigation