Skip to main content

Advertisement

Log in

Electrical conductivity and pH modelling of magnesium oxide–ethylene glycol nanofluids

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanofluids as new composite fluids have found their place as one of the attractive research areas. In recent years, research has increased on using nanofluids as alternative heat transfer fluids to improve the efficiency of thermal systems without increasing their size. Therefore, the examination and approval of different novel modelling techniques on nanofluid properties have made progress in this area. Stability of the nanofluids is still an important concern. Research studies on nanofluids have indicated that electrical conductivity and pH are two important properties that have key roles in the stability of the nanofluid. In the present work, three different sizes of magnesium oxide (MgO) nanoparticles of 20, 40 and 100 nm at different volume fractions up to 3% of the base fluid of ethylene glycol (EG) were studied for pH and electrical conductivity modelling. The temperature of the nanofluids was between 20 and \(70^{\circ }\hbox {C}\) for modelling. A genetic algorithm polynomial neural network hybrid system and an adaptive neuro-fuzzy inference system approach have been utilized to predict the pH and the electrical conductivity of MgO–EG nanofluids based on an experimental data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein A 1906 Ann. Phys.-Berlin 4 37

  2. Hatschek E 1913 Trans. Faraday Soc. 9 80

    Article  CAS  Google Scholar 

  3. Brinkman H C 1952 J. Chem. Phys. 20 571

    Article  CAS  Google Scholar 

  4. Awua J T, Ibrahim J S, Adio S A, Mehrabi M, Sharifpur M and Meyer J P 2018 Bull. Mater. Sci. 41 156

    Article  Google Scholar 

  5. Hong T, Yang H and Choi C J 2005 J. Appl. Phys. 97 064311

    Article  Google Scholar 

  6. Assael M J, Metaxa I N, Kakosimos K and Constantinou D 2006 Int. J. Thermophys. 27 999

    Article  CAS  Google Scholar 

  7. Hong K S, Hong T and Yang H 2006 Appl. Phys. Lett. 88 031901

    Article  Google Scholar 

  8. Xuan Y, Li Q and Hu W 2003 AIChE J. 49 1038

    Article  CAS  Google Scholar 

  9. Prasher R, Evans W, Meakin P, Fish J, Phelan P and Keblinski P 2006 Appl. Phys. Lett. 89 143119

    Article  Google Scholar 

  10. Putnam S A, Cahill D G, Braun P V, Ge Z and Shimmin R G 2006 J. Appl. Phys. 99 084308

    Article  Google Scholar 

  11. Aybar H S, Sharifpur M, Azizian M R, Mehrabi M and Meyer J P 2015 Heat Transfer Eng. 36 1085

    Article  CAS  Google Scholar 

  12. Sharifpur M, Solomon A B, Ottermann T L and Meyer J P 2018 Int. Commun. Heat Mass 98 297

    Article  CAS  Google Scholar 

  13. Nwosua Paul N, Meyer J P and Sharifpur M 2014 Comput. Fluids 101 241

    Article  Google Scholar 

  14. Sharifpur M, Yousefi S and Meyer J P 2016 Int. Commun. Heat Mass 78 168

    Article  CAS  Google Scholar 

  15. Adio S A, Sharifpur M and Meyer J P 2015 Heat Transfer Eng. 36 1241

    Article  CAS  Google Scholar 

  16. Adio S A, Sharifpur M and Meyer J P 2015 Bull. Mater. Sci. 38 1345

  17. Samal S, Satpati B and Chaira D 2010 J. Alloys Compd. 504 389

    Article  Google Scholar 

  18. Sharifpur M, Ntumba T, Meyer J P and Manca O 2017 Int. Commun. Heat Mass 85 12

    Article  CAS  Google Scholar 

  19. Adio S A, Mehrabi M, Sharifpur M and Meyer J P 2016 Int. Commun. Heat Mass 72 71

    Article  CAS  Google Scholar 

  20. Ntumba T, Sharifpur M and Meyer J P 2016 Heat Transfer Eng. 37 1

    Article  Google Scholar 

  21. Adio S A, Sharifpur M and Meyer J P 2016 J. Exp. Nanosci. 11 630

    Article  CAS  Google Scholar 

  22. Sharifpur M, Adio S A and Meyer J P 2015 Int. Commun. Heat Mass 68 208

    Article  CAS  Google Scholar 

  23. Chari V D, Sharma D V S G K, Prasad P S R and Murthy S R 2013 Bull. Mater. Sci. 36 517

    Article  CAS  Google Scholar 

  24. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O and Wongwises S 2014 J. Therm. Anal. Calorim. 118 287

  25. Hemmat Esfe M, Bahiraei M and Mahian O 2018 Powder Technol. 338 383

    Article  CAS  Google Scholar 

  26. Amani M, Amani P, Kasaeian A, Mahian O, Pop I and Wongwises S 2017 Sci. Rep.-UK 7 17369

  27. Amani M, Amani P, Mahian O and Estellé P 2017 J. Clean Prod. 166 350

    Article  CAS  Google Scholar 

  28. Mehrabi M, Pesteei S M and Pashaee T 2011 Int. Commun. Heat Mass 38 525

    Article  Google Scholar 

  29. Rezazadeh S, Mehrabi M, Pesteei S M and Mirzaee I 2012 J. Mech. Sci. Technol. 26 3701

    Article  Google Scholar 

  30. Mehrabi M, Rezazadeh S, Sharifpur M and Meyer J P 2012 ASME 6th International conference on energy sustainability and 10th fuel cell science, Engineering & Technology Conference (San Diego, CA)

    Google Scholar 

  31. Mehrabi M, Sharifpur M and Meyer J P 2012 Int. Commun. Heat Mass 39 971

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Sharifpur.

Appendix I

Appendix I

$$\begin{aligned} L_{11}= & {} a_{1,0} +a_{1,1} \cdot \phi +a_{1,2} \cdot d_{\mathrm{p}} +a_{1,3} \cdot \phi \cdot d_{\mathrm{p}} \\&+\,a_{1,4} \cdot \phi ^{2}+a_{1,5} \cdot d_{\mathrm{p}} ^{2} \\ L_{21}= & {} a_{2,0} +a_{2,1} \cdot T+a_{2,2} \cdot \phi +a_{2,3} \cdot d_{\mathrm{p}} \cdot T\\&+\,a_{2,4} \cdot T^{2}+a_{2,5} \cdot \phi ^{2} \\ L_{31}= & {} a_{3,0} +a_{3,1} \cdot T+a_{3,2} \cdot d_{\mathrm{p}} +a_{3,3} \cdot T\cdot d_{\mathrm{p}} \\&+\,a_{3,4} \cdot T^{2}+a_{3,5} \cdot d_{\mathrm{p}} ^{2} \\ L_{12}= & {} a_{4,0} +a_{4,1} \cdot T+a_{4,2} \cdot L_{11} +a_{4,3} \cdot T\cdot L_{11} \\&+\,a_{4,4} \cdot T^{2}+a_{4,5} \cdot L_{11} ^{2} \\ L_{22}= & {} a_{5,0} +a_{5,1} \cdot L_{21} +a_{5,2} \cdot L_{11} +a_{5,3} \cdot L_{21} \cdot L_{11} \\&+\,a_{5,4} \cdot L_{21} ^{2}+a_{5,5} \cdot L_{11} ^{2} \\ L_{32}= & {} a_{6,0} +a_{6,1} \cdot L_{31} +a_{6,2} \cdot L_{21} +a_{6,3} \cdot L_{31} \cdot L_{21}\\&+\,a_{6,4} \cdot L_{31} ^{2}+a_{6,5} \cdot L_{21} ^{2} \\ L_{13}= & {} a_{7,0} +a_{7,1} \cdot L_{12} +a_{7,2} \cdot L_{22} +a_{7,3} \cdot L_{12} \cdot L_{22} \\&+\,a_{7,4} \cdot L_{12} ^{2}+a_{7,5} \cdot L_{22} ^{2} \\ L_{23}= & {} a_{8,0} +a_{8,1} \cdot d_\mathrm{p} +a_{8,2} \cdot L_{32} +a_{8,3} \cdot d_\mathrm{p} \cdot L_{32}\\&+\,a_{8,4} \cdot d_\mathrm{p} ^{2}+a_{8,5} \cdot L_{32} ^{2} \\ \hbox {EC}= & {} a_{9,0} +a_{9,1} \cdot L_{13} +a_{9,2} \cdot L_{23} +a_{9,3} \cdot L_{13} \cdot L_{23}\\&+\,a_{9,4} \cdot L_{13} ^{2}+a_{9,5} \cdot L_{23} ^{2} \end{aligned}$$

\(L_{ij }\) is the i-th output in the j-th layer for the GA-PNN model.

$$\begin{aligned}&\left[ {a_{i,j} } \right] \\&\quad =\begin{array}{cccccc} 0.027747876&{} 3.822604153&{} 0.462429558&{} -0.374659514&{} -0.004205517&{} 0.045114086 \\ 0.751137821&{} 0.145938521&{} 5.011703576&{} -0.000502634&{} -0.103220539&{} 0.003901322 \\ 0.015971668&{} 0.235979845&{} 0.266171545&{} -0.001501415&{} -0.002750727&{} 0.001161073 \\ -3.283067536&{} 0.095068789&{} 0.819407225&{} -0.000315974&{} -0.000331478&{} 0.003277455 \\ 1.389849061&{} 0.64959239&{} 0.116319437&{} -0.125388437&{} -0.097872314&{} 0.235336051 \\ 1.193873934&{} -0.25706559&{} 0.982727589&{} 0.012610029&{} -0.000454244&{} 0.00173388 \\ 1.105115316&{} 1.489550714&{} -0.683855075&{} -0.098269034&{} -0.027494652&{} 0.133113803 \\ 0.010619241&{} 0.176968505&{} 0.67971365&{} -0.002261029&{} -0.005051182&{} 0.008740201 \\ 0.028571409&{} 1.176834459&{} -0.191474172&{} 0.057362616&{} 0.072612493&{} -0.129341963 \\ \end{array} \end{aligned}$$

Appendix II

$$\begin{aligned} L_{11}= & {} a_{1,0} +a_{1,1} \cdot \phi +a_{1,2} \cdot d_{\mathrm{p}} +a_{1,3} \cdot \phi \cdot d_{\mathrm{p}} \\&+\,a_{1,4}\cdot \, \phi ^{2}+a_{1,5} \cdot d_{\mathrm{p}} ^{2} \\ L_{21}= & {} a_{2,0} +a_{2,1} \cdot T+a_{2,2} \cdot \phi +a_{2,3} \cdot d_{\mathrm{p}} \cdot T\\&+\,a_{2,4} \cdot T^{2}+a_{2,5} \cdot \phi ^{2} \\ L_{12}= & {} a_{3,0} +a_{3,1} \cdot T+a_{3,2} \cdot d_{\mathrm{p}} +a_{3,3} \cdot T\cdot d_{\mathrm{p}} \\&+\,a_{3,4} \cdot T^{2}+a_{3,5} \cdot d_{\mathrm{p}} ^{2} \\ L_{22}= & {} a_{4,0} +a_{4,1} \cdot T+a_{4,2} \cdot L_{11} +a_{4,3} \cdot T\cdot L_{11} \\&+\,a_{4,4} \cdot T^{2}+a_{4,5} \cdot L_{11} ^{2} \\ L_{32}= & {} a_{5,0} +a_{5,1} \cdot L_{21} +a_{5,2} \cdot L_{11} +a_{5,3} \cdot L_{21} \cdot L_{11} \\&+\,a_{5,4} \cdot L_{21} ^{2}+a_{5,5} \cdot L_{11} ^{2} \\ L_{13}= & {} a_{6,0} +a_{6,1} \cdot L_{31} +a_{6,2} \cdot L_{21} +a_{6,3} \cdot L_{31} \cdot L_{21}\\&+\,a_{6,4} \cdot L_{31} ^{2}+a_{6,5} \cdot L_{21} ^{2} \\ L_{23}= & {} a_{7,0} +a_{7,1} \cdot L_{12} +a_{7,2} \cdot L_{22} +a_{7,3} \cdot L_{12} \cdot L_{22} \\&\,+a_{7,4} \cdot L_{12} ^{2}+a_{7,5} \cdot L_{22} ^{2}\\ pH= & {} a_{8,0}+a_{8,1} \cdot d_\mathrm{p}+a_{8,2}\cdot L_{32}+a_{8,3}\cdot d_\mathrm{p}\cdot L_{32}\\&+\,a_{8,4}\cdot d^{2}_\mathrm{p}+a_{8,5}\cdot L^{2}_{32} \end{aligned}$$

\(L_{ij }\)is the i-th output in the j-th layer for the GA-PNN model.

$$\begin{aligned}&\left[ {a_{i,j} } \right] \\&\quad =\begin{array}{cccccc} 0.033444754&{}0.57742064&{}0.557373458&{}-0.096976696&{}-0.004692827&{}0.000620553 \\ 9.898066327&{}-0.023691553&{}1.141784359&{}0.0000969&{}-0.210843577&{}-0.005661005 \\ -44.23417905&{}0.112053455&{}10.03507958&{}0.0000876&{}-0.447629593&{}-0.01478803 \\ 134.3682947&{}11.80598176&{}-28.47847853&{}0.200363275&{}1.615464421&{}-1.281415173 \\ -42.30134392&{}12.29220823&{}-2.444815909&{}-0.732689135&{}0.070198963&{}0.200862777 \\ -1.052141722&{}2.065814262&{}-0.846199307&{}-0.042050653&{}0.055096649&{}-0.024438988 \\ -74.54960615&{}0.253862617&{}15.70866275&{}-0.000155682&{}-0.718791861&{}-0.026399959 \\ 0.404458237&{}-2.519092266&{}3.422661793&{}2.167188004&{}1.817553076&{}-3.979307098 \\ \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabi, M., Sharifpur, M. & Meyer, J.P. Electrical conductivity and pH modelling of magnesium oxide–ethylene glycol nanofluids. Bull Mater Sci 42, 108 (2019). https://doi.org/10.1007/s12034-019-1808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1808-2

Keywords

Navigation