Microstructure and texture development in a polycrystal and different aluminium single crystals subjected to hydrostatic extrusion

  • D Moszczyńska
  • B Adamczyk-CieślakEmail author
  • B Osiak
  • R Lipiec
  • M Kulczyk
  • J Mizera


A hydrostatic extrusion (HE) process was applied to commercial pure polycrystalline aluminium (99.9%) and two aluminium single crystals \(\langle {111}\rangle \) and \(\langle {110}\rangle \). On comparison, the results obtained from single crystals and polycrystalline aggregates are unique. Microstructure and crystallographic texture investigations were performed by transmission electron microscopy, electron backscatter diffraction and X-ray diffraction (XRD). Significant differences in grain refinement and texture formation were noticed depending on the starting orientation. The deformed single crystal with \(\langle {110}\rangle \) starting orientation features an average grain size value of 150% higher than the second investigated single crystal (\(0.5\ \upmu \hbox {m}\) for the \(\langle {111}\rangle \) single crystal and \(1.3\ \upmu \hbox {m}\) for the second crystal). In turn, the average grain size obtained for polycrystalline aluminium is \(0.9\ \upmu \hbox {m}\). The deformation process causes a difference in the grain sizes, while a fraction of the high angle grain boundaries have a comparable volume percentage in all the deformed microstructures—reached about 35%. The qualitative and quantitative XRD texture results proved that the HE process leads to the formation of a characteristic fibrous texture.


Deformation texture crystallographic orientation single crystal electron backscattering diffraction aluminium 



This work was supported by the National Science Centre in Poland, Project No: 2013/09/B/ST8/03754.


  1. 1.
    Higuera-Cobos O F, Berríos-Ortiz J A and Cabrera J M 2014 Mater. Sci. Eng. A 609 273CrossRefGoogle Scholar
  2. 2.
    Zhilyaev A P, Kim B-K, Szpunar J A, Baró M D and Langdon T G 2005 Mater. Sci. Eng. A 391 377CrossRefGoogle Scholar
  3. 3.
    Bazarnik P, Romelczyk B, Kulczyk M and Lewandowska M 2013 Mater. Sci. Forum 765 423CrossRefGoogle Scholar
  4. 4.
    Beyerlein I J and Tóth L S 2009 Prog. Mater. Sci. 54 427CrossRefGoogle Scholar
  5. 5.
    Lipińska M, Olejnik L, Pietras A, Rosochowski A, Bazarnik P, Goliński J et al 2015 Mater. Design 88 22CrossRefGoogle Scholar
  6. 6.
    Ciemiorek M, Chromiński W, Olejnik L and Lewandowska M 2017 Mater. Design 130 392CrossRefGoogle Scholar
  7. 7.
    Vorhauer A and Pippan R 2004 Scr. Mater. 51 921CrossRefGoogle Scholar
  8. 8.
    Jamaati R and Toroghinejad M R 2014 Mater. Sci. Eng. A 598 263CrossRefGoogle Scholar
  9. 9.
    Miyamoto H, Fushimi J, Mimaki T, Vinogradov A and Hashimoto S 2005 Mater. Sci. Eng. A 405 221CrossRefGoogle Scholar
  10. 10.
    Furukawa M, Kawasaki Y, Miyahara Y, Horita Z and Langdon T G 2005 Mater. Sci. Eng. A 410–411 194CrossRefGoogle Scholar
  11. 11.
    Pardis N, Chen C, Ebrahimi R, Tóth L S, Gu C F, Beausir B et al 2015 Mater. Sci. Eng. A 628 423CrossRefGoogle Scholar
  12. 12.
    Miszczyk M, Paul H, Driver J H and Maurice C 2015 Acta Mater. 83 120CrossRefGoogle Scholar
  13. 13.
    Fukuda Y, Oh-Ishi K, Furukawa M, Horita Z and Langdon T G 2006 Mater. Sci. Eng. A 420 79CrossRefGoogle Scholar
  14. 14.
    Fukuda Y, Oh-Ishi K, Furukawa M, Horita Z and Langdon T G 2004 Acta Mater. 52 1387CrossRefGoogle Scholar
  15. 15.
    Han W Z, Zhang Z F, Wu S D and Li S X 2007 Acta Mater. 55 5889CrossRefGoogle Scholar
  16. 16.
    Grosdidier T, Fundenberger J-J, Goran D, Bouzy E, Suwas S, Skrotzki W et al 2008 Scripta Mater. 59 1087CrossRefGoogle Scholar
  17. 17.
    Skrotzki W, Tóth L S, Klöden B, Brokmeier H-G and Arruffat-Massion R 2008 Acta Mater. 56 3439CrossRefGoogle Scholar
  18. 18.
    Stanford N, Dunne D and Ferry M 2003 Mater. Sci. Eng. A 348 154CrossRefGoogle Scholar
  19. 19.
    Dymek S and Blicharski M 1996 Acta Metall. 35 417Google Scholar
  20. 20.
    Zdunek J, Mizera J, Wąsik K and Kurzydłowski K J 2013 Mater. Sci. Eng. A 569 92CrossRefGoogle Scholar
  21. 21.
    Jakubowska D, Zdunek J, Kulczyk M, Mizera J and Kurzydłowski K J 2015 Adv. Mater. Sci. Eng. 2015 ID 613839Google Scholar
  22. 22.
    Jakubowska D, Zdunek J, Kulczyk M, Mizera J and Kurzydłowski K J 2016 Arch. Metall. Mater. 61 933CrossRefGoogle Scholar
  23. 23.
    Chrominski W and Lewandowska M 2016 Acta Mater. 103 547CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Wejrzanowski T, Pielaszek R, Opalińska A, Matysiak H, Łojkowski W and Kurzydłowski K J 2006 Appl. Surf. Sci. 253 204CrossRefGoogle Scholar
  26. 26.
    Suwas S and Gurao N P 2008 J. Indian Inst. Sci. 88 151Google Scholar
  27. 27.
    Swaminathan S, Ravi Shankar M, Lee S, Hwang J, King A H, Kezar R F et al 2005 Mater. Sci. Eng. A 410–411 358CrossRefGoogle Scholar
  28. 28.
    Huang X and Winther G 2007 Phil. Mag. 87 5189CrossRefGoogle Scholar
  29. 29.
    Winther G and Huang X 2007 Phil. Mag. 87 5215CrossRefGoogle Scholar
  30. 30.
    Samajdar I and Doherty R D 1998 Acta Mater. 46 3145CrossRefGoogle Scholar
  31. 31.
    Bohlen J, Yi S B, Swiostek J, Letzig D, Brokmeier H G and Kainer K U 2005 Scripta Mater. 53 259CrossRefGoogle Scholar
  32. 32.
    Majda T, Moszczyńska D, Zdunek J, Kulczyk M, Mizera J and Kurzydłowski K J 2017 Mater. Sci. Tech. 836 1Google Scholar
  33. 33.
    Suwas S and Ray R K 2014 J. Indian Inst. Sci. 88 151Google Scholar
  34. 34.
    Doherty R D, Hughes D, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E et al 1998 Mater. Sci. Eng. A 1 14Google Scholar
  35. 35.
    Kashyap K T and George R 2006 Bull. Mater. Sci. 29 197CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • D Moszczyńska
    • 1
  • B Adamczyk-Cieślak
    • 1
    Email author
  • B Osiak
    • 1
  • R Lipiec
    • 1
  • M Kulczyk
    • 2
  • J Mizera
    • 1
  1. 1.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of High Pressure Physics (Unipress)Polish Academy of SciencesWarsawPoland

Personalised recommendations