Skip to main content

Advertisement

Log in

Understanding the role of glucose oxidase on carbon felt as electrodes in biocapacitor studies

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have reported glucose oxidase incorporated carbon felt bioelectrodes (GOx/CFE) as biocapacitors for energy storage. Glucose oxidase (GOx) was incorporated into a carbon felt electrode (CFE) and the electrode was characterized using X-ray diffraction, scanning electron microscope and Fourier transform infrared spectroscopy. As a result, it was found that GOx was successfully incorporated into a bare CFE and enhances the specific capacitance of the electrode and it was stable up to 500 charge–discharge cycles. Consequently, it was observed that GOx/CFE exhibits enhanced energy storage capacitance compared to that of pristine carbon felt. The capacitance of GOx/CFE is found to be \(4.21\hbox { mF cm}^{-2}\,(23\hbox { F g}^{-1})\) while the bare CFE shows \(3.68\hbox { mF cm}^{-2}\) in a phosphate buffer solution (\(\hbox {pH}=7.0\)). Albeit the capacitance values are small compared to conventional supercapacitors, the utility of these biocapacitors is expected to have a significant impact on glucose monitoring. Columbic efficiency obtained with the GOx/CFE matrix is 89%, and the electrode is stable up to 225 cycles with 100% retention of capacitance. After 225 cycles, the electrode loses the capacitance up to 12% retaining the capacitance of 88% up to 500 cycles. Cyclic voltammetric studies revealed that GOx/CFE is capable of energy storage with a \(200\,\upmu \hbox {A}\) higher capacitive loop than the bare CFE at a scan rate of \(10\hbox { mV s}^{-1}\). Electrochemical impedance analysis measurements also confirmed that GOx/CFE possess minimum resistivity. Moreover, it is very eco-friendly due to which unwanted pollution can be avoided. From the proposed matrix, it is believed that a green, eco-friendly, clean, renewable material for energy storage could be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta V, Gupta S and Miura N 2008 J. Power Sources 175 680

    Article  CAS  Google Scholar 

  2. Gamby J, Taberna P L, Simon P, Fauvarque J F and Chesneau M 2001 J. Power Sources 101 109

    Article  CAS  Google Scholar 

  3. Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Shiraishi S, Kurihara H and Oya A 2003 Carbon 41 1765

    Article  CAS  Google Scholar 

  4. Roldan S, Blanco C, Granda M, Menendez R and Santamaría R 2011 Angew. Chem. Int. Ed. 50 1699

    Article  CAS  Google Scholar 

  5. Cottineau T, Toupin M, Delahaye T, Brousse T and Belanger D 2006 Appl. Phys. A: Mater. Sci. Process. 82 599

    Article  CAS  Google Scholar 

  6. Jeong Y U and Manthiram A 2002 J. Electrochem. Soc. 149 A1419

    Article  CAS  Google Scholar 

  7. Meng C, Liu C, Chen L, Hu C and Fan S 2010 Nano Lett. 10 4025

    Article  CAS  Google Scholar 

  8. Aravindan V, Chuiling W, Reddy M V, Rao G V S, Chowdari B V R and Madhavi S 2012 Phys. Chem. Chem. Phys. 14 5808

    Article  CAS  Google Scholar 

  9. Perumal V and Hashim U 2014 J. Appl. Biomed. 12 1

    Article  Google Scholar 

  10. Falk M, Alcalde M, Bartlett P N, De Lacey A L, Gorton L, Sanchez C G et al 2014 PLoS ONE 9 1

    Article  Google Scholar 

  11. MacVittie K, Conlon T and Katz E 2015 Bioelectrochemistry 106 28

  12. Southcott M, MacVittie K, Halamek J, Halamkova L, Jemison W D, Lobel R et al 2013 Phys. Chem. Chem. Phys. 15 6278

    Article  CAS  Google Scholar 

  13. Reuilllard B, Le Goff A, Agnes C, Holzinger M, Zebda A, Gondran C et al 2013 Phys. Chem. Chem. Phys. 15 4892

    Article  Google Scholar 

  14. Szczupak A, Halamek J, Halámkova L, Bocharova V, Alfonta L and Katz E 2012 Energy Environ. Sci. 5 8891

    Article  CAS  Google Scholar 

  15. Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Goff A L, Gondran C et al 2013 Sci. Rep. 3 1

    Article  Google Scholar 

  16. Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K and Sode K 2011 J. Diabetes Sci. Technol. 5 1030

    Article  Google Scholar 

  17. Heli H, Sattarahmady N, Jabbari A, Moosavi-Movahedi A A, Hakimelahi G H and Tsai F Y 2007 J. Electroanal. Chem. 610 67

    Article  CAS  Google Scholar 

  18. Heli H, Moosavi-Movahedi A A, Jabbari A and Ahmad F 2007 J. Solid State Electrochem. 11 593

    Article  CAS  Google Scholar 

  19. Ravenna Y, Xia L, Gun J, Mikhaylov A A, Medvedev A G, Lev O et al 2015 Anal. Chem. 87 9567

    Article  CAS  Google Scholar 

  20. Agnes C, Holzinger M, Le Goff A, Reuillard B, Elouarzaki K, Tingry S et al 2014 Energy Environ. Sci. 7 1884

    Article  CAS  Google Scholar 

  21. Frew J E and Hill H A O 1988 Eur. J. Biochem. 172 261

    Article  CAS  Google Scholar 

  22. Sode K, Yamazaki T, Lee I, Hanashi T and Tsugawa W 2016 Biosens. Bioelectron. 76 20

    Article  CAS  Google Scholar 

  23. Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K and Sode K 2012 Electrochemistry 80 367

    Article  CAS  Google Scholar 

  24. Hanashi T, Yamazaki T, Tanaka H, Ikebukuro K, Tsugawa W and Sode K 2014 Sens. Actuators B: Chem. 196 429

    Article  CAS  Google Scholar 

  25. Rao S, Lu S, Guo Z, Li Y, Chen D and Xiang Y 2014 Adv. Mater. 26 5846

    Article  CAS  Google Scholar 

  26. Hanashi T, Yamazaki T, Tsugawa W, Ferri S, Nakayama D, Tomiyama M et al 2009 Biosens. Bioelectron. 24 1837

    Article  CAS  Google Scholar 

  27. Sattarahmady N, Dehdari Vais R and Heli H 2015 J. Appl. Electrochem. 45 577

    Article  Google Scholar 

  28. Beker P, Koren I, Amdursky N, Gazit E and Rosenman G 2010 J. Mater. Sci. 45 6374

    Article  CAS  Google Scholar 

  29. Bankar S B, Bule M V, Singhal R S and Ananthanarayan L 2009 Biotech. Adv. 27 489

    Article  CAS  Google Scholar 

  30. Lv Z, Xie D, Li F, Hu Y, Wei C and Feng C 2014 J. Power Sources 246 642

    Article  CAS  Google Scholar 

  31. Kim K J, Park M S, Kim J H, Hwang U, Lee N J, Jeong G et al 2012 Chem. Commun. 48 5455

    Article  CAS  Google Scholar 

  32. Wang C, Zhou C, Long Y, Cai H, Yin C, Yang Q et al 2016 Sci. Rep. 6 24490

  33. Degani Y and Heller A 1988 J. Am. Chem. Soc. 110 2615

    Article  CAS  Google Scholar 

  34. Schuhmann W, Ohara T J, Schmidt H L and Heller A 1991 J. Am. Chem. Soc. 113 1394

    Article  CAS  Google Scholar 

  35. Kim E, Liu Y, Bentley W E and Payne G F 2012 Adv. Funct. Mater. 22 1409

    Article  CAS  Google Scholar 

  36. Gopel W, Hesse J and Zemel J N 2008 Sensors: A Compr. Surv. 3 744

Download references

Acknowledgements

The authors thank the Council of Scientific and Industrial Research (CSIR), New Delhi for the financial support from the projects, CSC-0134 and MLP-0102. We extend our gratitude to our Director, Dr Vijayamohanan K Pillai for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Ragupathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaram, R., Karuppasamy, D., Ragupathy, P. et al. Understanding the role of glucose oxidase on carbon felt as electrodes in biocapacitor studies. Bull Mater Sci 42, 90 (2019). https://doi.org/10.1007/s12034-019-1787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1787-3

Keywords

Navigation