Advertisement

Fabrication of \(\hbox {Cu}_{2}\hbox {ZnSn(S,Se)}_{4}\) thin film solar cell devices based on printable nano-ink

  • Xinfeng Zheng
  • Yufeng LiuEmail author
  • Na Zhang
  • Jingshan Hou
  • Guoying Zhao
  • Yongzheng Fang
Article
  • 53 Downloads

Abstract

\(\hbox {Cu}_{{2}}\hbox {ZnSnS}_{{4}}\) (CZTS) as a promising light-absorber material has been extensively applied in photovoltaic solar cells due to its huge absorption coefficient (\({\sim }10^{4}\, \hbox {cm}^{-1})\) and optimal bandgap (\({\sim }\hbox {1.5 eV}\)). In this study, stable and printable CZTS nano-ink was acquired by dispersing CZTS nanocrystals (NCs) in organic solutions. The kesterite CZTS NCs possess uniform size and good crystallinity. The Raman peak of CZTS is located at \(330\, \hbox {cm}^{-1}\), which illustrates that the NCs consist of single-phase CZTS without any impurities. The as-prepared CZTS nano-ink was in turn spin-coated onto the Mo substrate to obtain the desired CZTS thin films under the conditions of anti-vacuum. The compact and dense CZTSSe absorbers were acquired by sulphuring and selenizing the as-prepared thin films. The band gap of the photovoltaic absorber materials is 1.2 eV after incorporating Se into the photovoltaic thin films. Finally, the CZTSSe photovoltaic thin film device, whose power conversion efficiency was \(1.40\pm 0.14\%\), was prepared by this easy and green method.

Keywords

\(\hbox {Cu}_{{2}}\hbox {ZnSnS}_{{4}}\) nanocrystal ink photovoltaic absorber thin films solar cell 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (grant numbers 51402335, 51472162, 11574335 and 61605115) and the Open Foundation of National Laboratory for Infrared Physics (grant number M201514) and Shanghai Sailing Project (no. 15YF1411800).

References

  1. 1.
    Tajima S, Umehara M, Hasegawa M, Mise T and Itoh T 2017 Prog. Photovoltaics Res. Appl. 25 14CrossRefGoogle Scholar
  2. 2.
    Lai F I, Yang J F, Wei Y L and Kuo S Y 2017 Green Chem. 19 795CrossRefGoogle Scholar
  3. 3.
    Paier J, Asahi R, Nagoya A and Kresse G 2009 Phys. Rev. B 79 1CrossRefGoogle Scholar
  4. 4.
    Miskin C K, Yang W C, Hages C J, Carter N J, Joglekar C S, Stach E A et al 2015 Prog. Photovoltaics Res. Appl. 23 654CrossRefGoogle Scholar
  5. 5.
    Liu K, Yao B, Li Y, Ding Z, Sun H, Jiang Y et al 2017 J. Mater. Chem. C 5 3035CrossRefGoogle Scholar
  6. 6.
    Li C, Yao B, Li Y, Xiao Z, Ding Z, Zhao H et al 2015 J. Alloys Compd. 643 152CrossRefGoogle Scholar
  7. 7.
    Walsh A, Chen S, Wei S H and Gong X G 2012 Adv. Energy Mater. 2 400CrossRefGoogle Scholar
  8. 8.
    Ge J, Chu J, Jiang J, Yan Y and Yang P 2015 ACS Sustain. Chem. Eng. 3 3043CrossRefGoogle Scholar
  9. 9.
    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J and Guha S 2013 Prog. Photovoltaics Res. Appl. 21 72CrossRefGoogle Scholar
  10. 10.
    Pandiyan R, Oulad Elhmaidi Z, Sekkat Z, Abd-Lefdil M and El Khakani M A 2017 Appl. Surf. Sci. 396 1562CrossRefGoogle Scholar
  11. 11.
    Nakayama N and Ito K 1996 Appl. Surf. Sci. 92 171CrossRefGoogle Scholar
  12. 12.
    Lin X, Kavalakkatt J, Lux-Steiner M C and Ennaoui A 2015 Adv. Sci. 2 1500028CrossRefGoogle Scholar
  13. 13.
    Uhl A R, Katahara J K and Hillhouse H W 2016 Energy Environ. Sci. 9 130CrossRefGoogle Scholar
  14. 14.
    Qu Y, Zoppi G and Beattie N S 2016 Prog. Photovoltaics Res. Appl. 24 836CrossRefGoogle Scholar
  15. 15.
    Wu W, Cao Y, Caspar J V, Guo Q, Johnson L K, Malajovich I et al 2014 J. Mater. Chem. C 2 3777CrossRefGoogle Scholar
  16. 16.
    Cao Y, Denny Jr M S, Caspar J V, Farneth W E, Guo Q et al 2012 J. Am. Chem. Soc. 134 15644CrossRefGoogle Scholar
  17. 17.
    Xin H, Katahara J K, Braly I L and Hillhouse H W 2014 Adv. Energy Mater. 4 1301823CrossRefGoogle Scholar
  18. 18.
    Wang G, Zhao W, Cui Y, Tian Q, Gao S, Huang L et al 2013 ACS Appl. Mat. Interfaces 5 10042CrossRefGoogle Scholar
  19. 19.
    Woo K, Kim Y and Moon J, 2012 Energy Environ. Sci. 5 5340CrossRefGoogle Scholar
  20. 20.
    Zhang R, Szczepaniak S M, Carter N J, Handwerker C A and Agrawal R 2015 Chem. Mater. 27 2114CrossRefGoogle Scholar
  21. 21.
    Woo K, Kim Y, Yang W, Kim K, Kim I, Oh Y et al 2013 Sci. Rep. 3 3069CrossRefGoogle Scholar
  22. 22.
    Ali N, Hussain A, Ahmed R, Wang M K, Zhao C, Haq B Uet al 2016 Renew. Sustain. Energy Rev. 59 726CrossRefGoogle Scholar
  23. 23.
    Guo Q, Ford G M, Agrawal R and Hillhouse H W 2013 Prog. Photovoltaics Res. Appl. 21 64CrossRefGoogle Scholar
  24. 24.
    Moore J, Hages C, Lundstrom M and Agrawal R 2012 Photovolt. Spec. Conf. IEEE 6 001475Google Scholar
  25. 25.
    McLeod S M, Hages C J, Carter N J and Agrawal R 2015 Prog. Photovolt. Res. Appl. 23 1550CrossRefGoogle Scholar
  26. 26.
    Zheng X, Liu Y, Sun Y, Li Q, Zhang R, Hou J et al 2017J. Alloys Compd. 728 322CrossRefGoogle Scholar
  27. 27.
    Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 1Google Scholar
  28. 28.
    Cao Y, Xiao Y, Jung J Y, Um H D, Jee S W, Choi H M et al 2013 ACS Appl. Mat. Interfaces 5 479CrossRefGoogle Scholar
  29. 29.
    Liu Y, Zheng X, Li Q, Long M, Hou J, Zhang N et al 2017 J. Alloys Compd. 695 3146CrossRefGoogle Scholar
  30. 30.
    Guo Q, Hillhouse H W and Agrawal R 2009 J. Am. Chem. Soc. 33 11672CrossRefGoogle Scholar
  31. 31.
    Riha S C, Parkinson B A and Prieto A L 2011 J. Am. Chem. Soc. 133 15272CrossRefGoogle Scholar
  32. 32.
    Fan F J, Wu L, Gong M, Liu G, Wang Y X and Yu S H 2013 ACS Nano 7 1454CrossRefGoogle Scholar
  33. 33.
    Yang W, Duan H S, Bob B, Zhou H, Lei B, Chung C H et al 2012 Adv. Mater. 24 6323CrossRefGoogle Scholar
  34. 34.
    Tian Q, Wang G, Zhao W, Chen Y, Yang Y, Huang L et al 2014 Chem. Mater. 26 3098CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Shanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations