Skip to main content
Log in

Role of surface passivation on visible and infrared emission of Ge quantum dots formed by dewetting

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The dual action of oxide-related defects in the visible and infrared emission of germanium (Ge) self-assembled quantum dots (QDs) is discussed. The Ge particles were fabricated by solid-state dewetting on a thin layer of \({\hbox {SiO}}_{2}\). Subsequent surface passivation by amorphous silicon was carried out for several samples. All samples were encapsulated by \({\hbox {SiO}}_{2}\). Atomic force microscopy analysis indicates a linear relationship between the size of QDs and the initial thickness of the amorphous Ge films. The crystallization of the QDs was evidenced by transmission electron microscopy and Raman spectroscopy. Photoluminescence measurements show that the main visible emission is blue-green centred around 520 nm. The luminescence attributed to the radiative recombination of quantum-confined excitons is only observed when the surface is in-situ passivated prior to the deposition of the oxide matrix. The results of this work are helpful for optimizing the performance of the optoelectronic devices based on the infrared emission of Ge nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Canham L T 2000 Nature 408 411

    Article  CAS  Google Scholar 

  2. Kanoun M, Lemiti M, Bremond G, Souifi A, Bassani F and Berbezier I 2004 Superlattices Microstruct. 36 143

    Article  CAS  Google Scholar 

  3. Bouchier D, Yam V, Halbwax M, Nguyen L, Debarre D and Fossard F 2006 ECS Trans. 3 569

    Article  CAS  Google Scholar 

  4. Lee D C, Pietryga J M, Robel I, Werder D J, Schaller R D and Klimov V I 2009 J. Am. Chem. Soc. 131 3436

    Article  CAS  Google Scholar 

  5. Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G et al 2013 Rev. Mod. Phys. 85 961

    Article  CAS  Google Scholar 

  6. Efros A L and Rosen M 2000 Annu. Rev. Mater. Sci. 30 475

    Article  CAS  Google Scholar 

  7. Takeoka S, Fujii M, Hayashi S and Yamamoto K 1998 Phys. Rev. B 58 7921

    Article  CAS  Google Scholar 

  8. Wilcoxon J P, Provencio P P and Samara G A 2001 Phys. Rev. B 64 035417

    Article  Google Scholar 

  9. Min K S, Shcheglov K V, Yang C M, Atwater H A, Brongersma M L and Polman A 1996 Appl. Phys. Lett. 68 2511

    Article  CAS  Google Scholar 

  10. Rebohle L, Gebel T, von Borany J, Skorupa W, Helm M, Pacifici D et al 2002 Appl. Phys. B 74 53

    Article  CAS  Google Scholar 

  11. Avella M, Prieto Á C, Jiménez J, Rodríguez A, Sangrador J, Rodríguez T et al 2008 Mater. Sci. Eng. B 147 200

    Article  CAS  Google Scholar 

  12. Bostedt C, Van Buuren T, Willey T M, Franco N, Terminello L J, Heske C et al 2004 Appl. Phys. Lett. 84 20

    Article  Google Scholar 

  13. Niquet Y M, Allan G, Delerue C and Lannoo M 2000 Appl. Phys. Lett. 77 1182

    Article  CAS  Google Scholar 

  14. Kartopu G, Sapelkin A V, Karavanskii V A, Serincan U and Turan R 2008 J. Appl. Phys. 103 113518

    Article  Google Scholar 

  15. Chang S-T and Liao S-H 2009 J. Vac. Sci. Technol. B 27 535

    Article  CAS  Google Scholar 

  16. Fraj I, Favre L, David T, Abbarchi M, Liu K, Claude J B et al 2017 Appl. Surf. Sci. 419 476

    Article  CAS  Google Scholar 

  17. Takagahara T and Takeda K 1992 Phys. Rev. B 46 15578

    Article  CAS  Google Scholar 

  18. Maeda Y 1995 Phys. Rev. B 51 1658

    Article  CAS  Google Scholar 

  19. Okamoto S and Kanemitsu Y 1996 Phys. Rev. B 54 16421

    Article  CAS  Google Scholar 

  20. Kartopu G, Bayliss S C, Karavanskii V A, Curry R J, Turan R and Sapelkin A V 2003 J. Lumin. 101 275

    Article  CAS  Google Scholar 

  21. Singha A, Roy A, Kabiraj D and Kanjilal D 2006 Semicond. Sci. Technol. 21 1691

    Article  CAS  Google Scholar 

  22. Ko T S, Shieh J, Yang M C, Lu T C, Kuo H C and Wang S C 2008 Thin Solid Films 516 2934

    Article  CAS  Google Scholar 

  23. Jawad M J, Hashim M R, Ali N K, Corcoles E P and Arora Vijay K 2014 J. Electochem. Soc. 161 D801

    Article  CAS  Google Scholar 

  24. Kanjilal A, Lundsgaard Hansen J, Gaiduk P, Nylandsted Larsen A, Cherkashin N, Claverie A et al 2003 Appl. Phys. Lett. 82 1212

    Article  CAS  Google Scholar 

  25. Berbezier I, Karmous A, Ronda A, Sgarlata A, Balzarotti A, Castrucci P et al 2006 Appl. Phys. Lett. 89 063122

    Article  Google Scholar 

  26. Szkutnik P D, Sgarlata A, Motta N, Placidi E, Berbezier I and Balzarotti A 2007 Surf. Sci. 601 2778

    Article  CAS  Google Scholar 

  27. Rowell N L, Lockwood D J, Karmous A, Szkutnik P D, Berbezier I and Ronda A 2008 Superlattices Microstruct. 44 305

    Article  CAS  Google Scholar 

  28. Sendova-Vassileva M, Tzenov N, Dimova-Malinovska D, Rosenbauer M, Stutzman M and Josepovits K V 1995 Thin Solid Films 255 282

    Article  CAS  Google Scholar 

  29. Zacharias M and Fauchet P M 1997 Appl. Phys. Lett. 71 380

    Article  CAS  Google Scholar 

  30. Viswanathamurthi P, Bhattarai N, Kim H Y, Khil M S, Lee D R and Suh E-K 2004 J. Chem. Phys. 121 441

    Article  CAS  Google Scholar 

  31. Das S, Singha R K, Gangopadhyay S, Dhar A and Ray S K 2010 J. Appl. Phys. 108 053510

    Article  Google Scholar 

  32. Zrir M A, Saloum S, Alkhaled B and Shaker S A 2017 Surf. Sci. 659 5

    Article  CAS  Google Scholar 

  33. Szkutnik P D, Karmous A, Bassani F, Ronda A, Berbezier I, Gacem K et al 2008 Eur. Phys. J. Appl. Phys. 41 103

    Article  CAS  Google Scholar 

  34. Perova T S, Wasyluk J, Lyutovich K, Kasper E, Oehme M, Rode K et al 2011 J. Appl. Phys. 109 033502

    Article  Google Scholar 

  35. Wu X L, Gao T, Siu G G, Tong S and Bao X M 1999 Appl. Phys. Lett. 74 2420

    Article  CAS  Google Scholar 

  36. Nozaki S, Sato S, Denda A, Ono H and Morisaki H 1994 MRS Proc. 358 133

    Article  Google Scholar 

  37. Qin G G and Jia Y Q 1993 Solid State Commun. 86 559

    Article  CAS  Google Scholar 

  38. Loo R, Meunier-Beillard P, Vanhaeren D, Bender H, Caymax M, Vandervorst W et al 2001 J. Appl. Phys. 90 2565

    Article  CAS  Google Scholar 

  39. Dashiell M W, Denker U, Muller C, Costantini G, Manzano C, Kern K et al 2002 Appl. Phys. Lett. 80 1279

    Article  CAS  Google Scholar 

  40. Wang K L, Cha D, Liu J and Chen C 2007 Proc. IEEE 95 1866

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (M A Zrir) thanks Prof I Othman, the Director General of the AECS, for his ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Zrir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouassa, M., Zrir, M.A., Jadli, I. et al. Role of surface passivation on visible and infrared emission of Ge quantum dots formed by dewetting. Bull Mater Sci 42, 69 (2019). https://doi.org/10.1007/s12034-019-1771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1771-y

Keywords

Navigation