Skip to main content
Log in

Structure and luminescence properties of \(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):\(\hbox {Tb}^{3+}\) synthesized by solid-state reaction method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

\(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):\(\hbox {Tb}^{3+}\) material used in dosimetry field was synthesized by solid-state reaction method. The scanning electron microscopy image showed that the material exhibits porous surface with a very large surface area. The photoluminescence spectrum confirmed energy transfer process from \(\hbox {Gd}^{3+}\) ions to \(\hbox {Tb}^{3+}\) ions, and the luminescence of this material was entirely due to Tb ions. The high luminescent intensity at 542 nm was perfectly consistent with the sensitive wavelength range of photomultiplier tubes in the thermoluminescence (TL) reader. The TL-glow curve was very simple with the temperatures of the main peak in the range from 200 to \(230^{\circ }\hbox {C}\), and the glow-curve shape was suitable for dosimetry purposes. The TL intensities of \(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):10 mol% \(\hbox {Tb}^{3+}\) was higher than that of common \(\hbox {CaSO}_{{4}}\):\(\hbox {Dy}^{3+}\) dosimeters. The estimation on available application of the prepared material in neutron dose measurement was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qiufeng S, Fangtian Y, Shihua H, Hongshang P, Yan H and Ye T 2014 J. Lumin. 152 138

    Article  Google Scholar 

  2. Deyin W, Nobuhiro K, Lei Z and Yuhua W 2010 J. Electrochem. Soc. 157 233

    Article  Google Scholar 

  3. Peijzel P S, Vermeulen P, Schrama W J M and Meijerink A 2005 Phys. Rev. B 71 125

    Google Scholar 

  4. Yanguang Q, Xiantao W, Xinyue L, Yonghu C and Min Y 2014 J. Lumin. 152 58

    Article  Google Scholar 

  5. Azorın J N, Khaidukov N M, Rodrıguez A S and Azorın V J C 2007 Nucl. Instrum. Methods B 263 36

    Article  Google Scholar 

  6. Molina P, Santiago M, Marcazzó J, Spano F, Khaidukov N and Caselli E 2011 Radiat. Meas. 46 1361

    Article  CAS  Google Scholar 

  7. Qian S, Huang L, Zhao S and Xu S 2017 J. Rare Earths 35 787

    Article  CAS  Google Scholar 

  8. Ye J, Qingping W, Hongpeng Z, Liangliang Z and Jiahua Z 2016 Ceram. Int. 42 3309

    Article  Google Scholar 

  9. Mares J A, Nikl M, Nitsch K, Solovieva N, Krasnikov A and Zazubovich S 2001 J. Lumin. 94–95 321

    Article  Google Scholar 

  10. Yong Z, Jingwen L, Ning D, Shan J, Tao Z and Jiayu L 2015 J. Non-Cryst. Solids 423–424 30

    Google Scholar 

  11. Xin Y S, Qing M Y, Pan G, Hong S W and Peng X 2015 J. Lumin. 165 40

    Article  Google Scholar 

  12. Lili H, Yuhua W, Jia Z and Ye T 2014 Mater. Chem. Phys. 143 476

    Article  Google Scholar 

  13. Xin-Yuan S, Shi-Ming H, Mu G, Qing-Chun G, Xiao-San G and Zi-PiaoY 2010 Phys. B 405 569

    Article  Google Scholar 

  14. Faria L O et al 2004 Radiat. Prot. Dosim. 112 435

    Article  CAS  Google Scholar 

  15. Silva E C et al 2013 Radiat. Meas. 59 119

    Article  CAS  Google Scholar 

  16. Hanh H K et al 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3344

    Article  CAS  Google Scholar 

  17. Kui H W, Lo D, Tsang Y C, Khaidukov N M and Makhov V N 2006 J. Lumin. 117 29

    Article  CAS  Google Scholar 

  18. Ha X V, Nguyen C T and Doan P T T 2014 J. Nucl. Sci. Technol. (Vietnam) 4 47

    Google Scholar 

  19. James O E, I-Ching L, Malgorzata M L, Paul M B, Alexandra N, Robert A L and Richard E R 1996 Thermochim. Acta 286 233

  20. Chi F, Hu F, Wei I X, Chen Y and Yin M 2017 J. Rare Earths 35 436

    Article  CAS  Google Scholar 

  21. Mahiou R, Metin J, Fournier M T, Cousseins J C and Jacquier B 1989 J. Lumin. 1 51

    Article  Google Scholar 

  22. Kesavulu C R, Kim H J, Lee S W, Kaewkhao J, Kaewnuam E and Wantana N 2017 J. Alloys Compd. 704 557

    Article  CAS  Google Scholar 

  23. Te-Ju L, Li-Yang L, Eric W D, Teng-Ming C, Bing-Ming C and Chien-Yueh T 2006 Appl. Phys. Lett. 89 131121

    Article  Google Scholar 

  24. Chenggang Z, Anxian L, Ligang Z, Zhihua Z and Woyun L 2011 Spectrochim. Acta Part A 82 406

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Vietnam Academy Science and Technology on research Project VAST03.06/17-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui The Huy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinh, H.X., Thang, N.C., Tien, D.P.T. et al. Structure and luminescence properties of \(\hbox {K}_{{2}}\hbox {GdF}_{{5}}\):\(\hbox {Tb}^{3+}\) synthesized by solid-state reaction method. Bull Mater Sci 42, 70 (2019). https://doi.org/10.1007/s12034-019-1765-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1765-9

Keywords

Navigation