Skip to main content
Log in

Systematic investigation of parameters of an electrospinning process of poly(acrylic acid) nanofibres using response surface methodology

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, response surface methodology (RSM) based on the central composite design (CCD) was used for modelling the electrospinning process of polyacrylic acid (PAA) nanofibres, so as to assess simultaneously the effect of the most important electrospinning parameters (concentration of polymer solution, applied voltage, distance between the nozzle and collector and flow rate of solution) on the diameter of electrospun PAA nanofibres. The surface morphology was studied by scanning electron microscopy (SEM). The average diameter of PAA nanofibres obtained was from 233 to 1210 nm from SEM images with different process parameters. The results showed that the solution concentration, the applied voltage and the distance between the nozzle and collector are, in that order, the most important parameters affecting the diameter of nanofibres. The flow rate, however, showed no significant effect on the nanofiber diameter. The RSM model predicted that under optimal electrospinning conditions (solution concentration of 3 w/v%, voltage of 16 kV, electrospinning distance of 15 cm and flow rate of 1.75 ml \(\hbox {h}^{-1})\), the nanofibres would be 262 nm in diameter, which was proved to be very close to the actual measured value. Therefore, the obtained results demonstrated the good performance of the RSM model in investigating the effect of electrospinning variables and predicting the diameter of PAA nanofibres. PAA nanofibres have great potential in applications such as sensors and biosensors, removal of heavy metals and contaminants, muscle tissue engineering, etc. and the use of thinner nanofibres leads to their improved performance in these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li D and Xia Y 2004 Adv. Mater. 16 1151

    Article  CAS  Google Scholar 

  2. Xue J, Xie J, Liu W and Xia Y 2017 Acc. Chem. Res. 50 1976

    Article  CAS  Google Scholar 

  3. Hu J, Kai D, Ye H, Tian L, Ding X, Ramakrishna S et al 2017 Mater. Sci. Eng. C 70 1089

    Article  CAS  Google Scholar 

  4. Sharma A, Gupta A, Rath G, Goyal A, Mathur R and Dhakate S 2013 J. Mater. Chem. B 1 3410

    Article  CAS  Google Scholar 

  5. Hong K H 2007 Polym. Eng. Sci. 47 43

    Article  CAS  Google Scholar 

  6. Chen S, Liu B, Carlson M A, Gombart A F, Reilly D A and Xie J 2017 Nanomedicine 12 1335

    Article  Google Scholar 

  7. Fakhrali A, Ebadi S V, Gharehaghaji A A, Latifi M and Moghassem A 2016 e-Polymers 16 125

    Article  CAS  Google Scholar 

  8. Fakhrali A, Ebadi S V and Gharehaghaji A A 2014 Fibers Polym. 15 2535

    Article  CAS  Google Scholar 

  9. Fakhrali A, Ebadi S V, Gharehaghaji A A, Latifi M and Moghassem A 2017 Nano Hybrids and Composites 14 25

    Article  Google Scholar 

  10. Heikkilä P, Taipale A, Lehtimäki M and Harlin A 2008 Polym. Eng. Sci. 48 1168

    Article  Google Scholar 

  11. Wang R, Liu Y, Li B, Hsiao B S and Chu B 2012 J. Membr. Sci. 392 167

    Article  Google Scholar 

  12. Shokrollahi M, Morshed M, Semnani D and Rezaei B 2014 Int. J. Polym. Mater. 63 161

    Article  CAS  Google Scholar 

  13. Tamura T and Kawakami H 2010 Nano Lett. 10 1324

    Article  CAS  Google Scholar 

  14. Wang Z-G, Wan L-S, Liu Z-M, Huang X-J and Xu Z-K 2009 J. Mol. Catal. B: Enzym. 56 189

    Article  CAS  Google Scholar 

  15. Lin Q, Li Y and Yang M 2012 Sens. Actuat. B: Chem. 161 967

    Article  CAS  Google Scholar 

  16. Fereydonian F, Semnani D, Morshed M, Rezaei B and Behtaj S 2015 J. Compos. Mater. 50 1321

    Article  Google Scholar 

  17. Huang Z-M, Zhang Y-Z, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223

    Article  CAS  Google Scholar 

  18. Patil J V, Mali S S, Kamble A S, Hong C K, Kim J H and Patil P S 2017 Appl. Surf. Sci. 423 641

    Article  CAS  Google Scholar 

  19. Tan S H, Inai R, Kotaki M and Ramakrishna S 2005 Polymer 46 6128

    Article  CAS  Google Scholar 

  20. Ziabari M, Mottaghitalab V and Haghi A K 2010 Korean J. Chem. Eng. 27 340

    Article  CAS  Google Scholar 

  21. Moroni L, Licht R, de Boer J, de Wijn J R and van Blitterswijk C A 2006 Biomaterials 27 4911

    Article  CAS  Google Scholar 

  22. Ding B, Yamazaki M and Shiratori S 2005 Sens. Actuat. B: Chem. 106 477

    Article  CAS  Google Scholar 

  23. Kim J R, Choi S W, Jo S M, Lee W S and Kim B C 2004 Electrochim. Acta 50 69

    Article  CAS  Google Scholar 

  24. Asai H, Kawai T, Shimada N, Sakai T and Nakane K 2015 Sens. Actuat. B: Chem. 214 76

    Article  CAS  Google Scholar 

  25. Podgórski A, Bałazy A and Gradoń L 2006 Chem. Eng. Sci. 61 6804

    Article  Google Scholar 

  26. Montgomery D C 2008 Design and analysis of experiments (New York: John Wiley & Sons)

  27. Yazdanpanah M, Khanmohammadi M, Aghdam R, Shabani K and Rajabi M 2014 CCL 3 175

    Article  CAS  Google Scholar 

  28. Hasanzadeh M, Hadavi Moghadam B, Moghadam Abatari M and Haghi A 2013 Bulg. Chem. Commun. 45 178

    CAS  Google Scholar 

  29. Chen J-P, Ho K-H, Chiang Y-P and Wu K-W 2009 J. Membr. Sci. 340 9

    Article  CAS  Google Scholar 

  30. Nasouri K, Shoushtari A M and Mojtahedi M R M 2015 Fibers Polym. 16 1941

    Article  CAS  Google Scholar 

  31. Naderi N, Agend F, Faridi-Majidi R, Sharifi-Sanjani N and Madani M 2008 J. Nanosci. Nanotechnol. 8 2509

    Article  CAS  Google Scholar 

  32. Wei L, Qiu Q, Wang R and Qin X 2018 J. Appl. Polym. Sci. 135 46407

    Article  Google Scholar 

  33. Khatti T, Naderi-Manesh H and Kalantar S M 2017 Fibers Polym. 18 2368

    Article  CAS  Google Scholar 

  34. Amiri N, Moradi A, Tabasi S A S and Movaffagh J 2018 Mater. Res. Express. 5 045404

    Article  Google Scholar 

  35. Liu A, Honma I, Ichihara M and Zhou H 2006 Nanotechnology 17 2845

    Article  CAS  Google Scholar 

  36. Elliott J E, Macdonald M, Nie J and Bowman C N 2004 Polymer 45 1503

    Article  CAS  Google Scholar 

  37. Ebadi S V, Fakhrali A, Ranaei-Siadat S O, Gharehaghaji A A, Mazinani S, Dinari M et al 2015 RSC Adv. 5 42572

    Article  CAS  Google Scholar 

  38. Xiao S, Shen M, Ma H, Guo R, Zhu M, Wang S et al 2010 J. Appl. Polym. Sci. 116 2409

  39. Xu R, Jia M, Zhang Y and Li F 2012 Micropor. Mesopor. Mat. 149 111

    Article  CAS  Google Scholar 

  40. Ebadi S V, Fakhrali A, Gharehaghaji A A, Mazinani S and Ranaei-Siadat S O 2016 Polym. Compos. 37 3149

    Article  CAS  Google Scholar 

  41. Jin X and Hsieh Y-L 2005 Polymer 46 5149

    Article  CAS  Google Scholar 

  42. Meng L, Klinkajon W, Harkin S, Supaphol P and Wnek G E 2015 Polym. Int. 64 42

    Article  CAS  Google Scholar 

  43. Zhang R-Y, Zaslavski E, Vasilyev G, Boas M and Zussman E 2018 Biomacromolecules 19 588

    Article  CAS  Google Scholar 

  44. McKeon-Fischer K, Flagg D and Freeman J 2011 Polymer 52 4736

    Article  CAS  Google Scholar 

  45. Sarlak N, Nejad M A F, Shakhesi S and Shabani K 2012 Chem. Eng. J. 210 410

    Article  CAS  Google Scholar 

  46. Rabbi A, Nasouri K, Bahrambeygi H, Shoushtari A M and Babaei M R 2012 Fibers Polym. 13 1007

    Article  CAS  Google Scholar 

  47. Mohammadian M and Haghi A 2014 Bulg. Chem. Commun. 46 545

    Google Scholar 

  48. Meng L, Klinkajon W, K-hasuwan P R, Harkin S, Supaphol P and Wnek G E 2015 Polym. Int. 64 42

    Article  CAS  Google Scholar 

  49. Lu P and Hsieh Y-L 2009 Nanotechnology 20 415604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Semnani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, S.V., Fakhrali, A. & Semnani, D. Systematic investigation of parameters of an electrospinning process of poly(acrylic acid) nanofibres using response surface methodology. Bull Mater Sci 42, 115 (2019). https://doi.org/10.1007/s12034-019-1764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1764-x

Keywords

Navigation