Skip to main content
Log in

A facile synthesis of novel \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) microspheres as electrode material for supercapacitor applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A mixed metal oxide, \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) is prepared in a simple, lucid and facile synthesis route as an active material for supercapacitor applications. The structural and morphological information is provided by X-ray diffraction, Fourier transform infrared, Raman and scanning electron microscopy data. The as-prepared \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) microspheres are subjected to cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy studies to examine its electrochemical behaviour in 2  M KOH aqueous electrolyte. Zinc molybdate microspheres have demonstrated very good electrochemical performance with 234.75 F \(\hbox {g}^{-1}\) at 0.5 A \(\hbox {g}^{-1}\) with good specific capacitance retention (82%) for sustained 1600 charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xia X, Lei W, Hao Q, Wang W and Wang X 2013 Electrochim. Acta 99 253

    Article  CAS  Google Scholar 

  2. Vellacheri R, Pillai V K and Kurungot S 2012 Nanoscale 4 890

    Article  CAS  Google Scholar 

  3. Wang Y, Guo J, Wang T, Shao J, Wang D and Yang Y-W 2015 Nanomaterials 5 1667

    Article  CAS  Google Scholar 

  4. Xue R, Hong W, Pan Z, Jin W, Zhao H, Song Y et al 2016 Electrochim. Acta 22 838

    Article  Google Scholar 

  5. Jayalakshmi M and Balasubramanian K 2009 Int. J. Electrochem. Sci. 4 571

    CAS  Google Scholar 

  6. Yuan C, Wu H B, Xie Y and Lou X W 2014 Angew. Chem. Int. Ed. 53 1488

    Article  CAS  Google Scholar 

  7. Xiao W, Chen J S, Li C M, Xu R and Lou X W 2010 Chem. Mater. 22 746

    Article  CAS  Google Scholar 

  8. Singh R N, Singh J P and Singh A 2008 Int. J. Hydrogen Energy 33 4260

    Article  CAS  Google Scholar 

  9. Kianpour G, Soofivand F, Badiei M, Salavati-Niasari M and Hamadanian M 2016 J. Mater. Sci.: Mater. Electron. 27 10244

    CAS  Google Scholar 

  10. Cherian C T, Reddy M V, Haur S C and Chowdari B V R 2013 ACS Appl. Mater. Interfaces 5 918

    Article  CAS  Google Scholar 

  11. Peng S, Li L, Wu H B, Madhavi S and Lou X W (David) 2014 Adv. Energy Mater. 1401171

  12. Zhou C, Yang W, Zeng G, Lei Y, Gu L, Xi X et al 2015 Chem. Asian J. 10 1745

    Article  CAS  Google Scholar 

  13. Wang J, Liu S, Zhang X, Liu X, Liu X, Li N et al 2016 Electrochim. Acta 213 663

    Article  CAS  Google Scholar 

  14. Purushottaman K K, Cuba M and Muralidharan G 2012 Mater. Res. Bull. 47 3348

    Article  Google Scholar 

  15. Senthilkumar B, Selvan R K, Meyrick D and Minakshi M 2015 Int. J. Electrochem. Sci. 10 185

    CAS  Google Scholar 

  16. Xue R, Hong W, Pan Z, Jin W, Zhao H, Song Y et al 2016 Electrochim. Acta 222 838

    Article  CAS  Google Scholar 

  17. Ramezani M, Hosseinpour-Mashkani S M, Sobhani-Nasab A and Ghasemi Estarki H 2015 J. Mater. Sci.: Mater. Electron. 26 7588

    CAS  Google Scholar 

  18. Zhang G, Yu S, Yang Y, Jiang W, Zhang S and Huang B 2007 J. Cryst. Growth 312 1866

    Article  Google Scholar 

  19. Gironi L, Arnaboldia C, Beeman J W, Cremonesi O, Danevich F A, Degoda V Y et al 2010 J. Instrum. 5 11007

    Article  Google Scholar 

  20. Lv L, Tong W, Zhang Y, Su Y and Wang X 2011 J. Nanosci. Nanotechnol. 11 9506

    Article  CAS  Google Scholar 

  21. Ivleva L I, Voronina I S, Berezovskaya L Y, Lykov P A, Osiko V V and Iskhakova L D 2008 Crystallogr. Rep. 53 1087

    Article  CAS  Google Scholar 

  22. Abrahams S C 1967 J. Chem. Phys. 46 2052

    Article  CAS  Google Scholar 

  23. Liang Y, Liu P, Li H B and Yang G W 2012 Cryst. Growth Des. 12 4487

    Article  CAS  Google Scholar 

  24. Hardcastle F D and Wachs I E 1990 J. Raman Spectrosc. 21 683

    Article  CAS  Google Scholar 

  25. Bhattacharya S, Kar T, Bar A K, Roy D, Graca M P F and Valente M A 2011 Sci. Adv. Mater. 3 284

    Article  CAS  Google Scholar 

  26. Subcik J, Koudelka L, Mosner P, Montagne L, Revel B and Gregora I 2009 J. Non-Cryst. Solids 355 970

    Article  CAS  Google Scholar 

  27. Keereeta Y, Thongtem T and Thongtem S 2012 Mater. Lett. 68 265

    Article  CAS  Google Scholar 

  28. Jia R, Zhang Ch and Xu J 2013 Adv. Mater. Res. 624 51

    Article  Google Scholar 

  29. Aleksandrov L, Komatsu T, Iordanova R and Dimitriev Y 2011 Opt. Mater. 33 839

    Article  CAS  Google Scholar 

  30. Nakamoto V K 1963 Infrared spectra of inorganic and coordination compounds (New York, London: John Wiley & Sons, Inc.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Vickraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, B.J., Vickraman, P. & Justin, A.S. A facile synthesis of novel \(\upalpha \)-\(\hbox {ZnMoO}_{{4}}\) microspheres as electrode material for supercapacitor applications. Bull Mater Sci 42, 52 (2019). https://doi.org/10.1007/s12034-019-1749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1749-9

Keywords

Navigation