Skip to main content
Log in

First principles study of breaking energy and mechanical strength of Kevlar-29

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The first principles study is performed for the mechanical strength of Kevlar-29, and is based on density functional theory. The bond strength is investigated relative to the displacement of central nitrogen atom along X, Y and Z directions, respectively. The structural property analysis explains the asymmetric nature. A higher bond breaking energy is observed during compression along Z direction and vice versa for elongation. It is an insulator of forbidden energy gap which increases while compression and reduces during elongation. Crystal orbital overlap population reveals the higher strength of anti-bonding orbitals. It is mechanically stronger along the Z-axis and weaker along the Y-axis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hindeleh A M and Abdo S M 1989 Polymer 30 218

    Article  CAS  Google Scholar 

  2. Hindeleh A M and Abdo S M 1989 Polym. Commun. 30 184

    Article  CAS  Google Scholar 

  3. Hancox N 1993 Mater. Design 14 312

    Article  Google Scholar 

  4. Fink J K 2008 High performance polymer (Norwich: William Andrew Inc.) p 423

  5. Downing J W and Newell J A 2004 J. Appl. Poly. Sci. 91 417

    Article  CAS  Google Scholar 

  6. Hongu T, Phillips GO and Takigami M 2005 New millennium fibers (USA: Woodhead Publishing) p 299

    Chapter  Google Scholar 

  7. Yang H H 1993 Kevlar aramid fiber (New York: John Wiley & Sons Inc.)

    Google Scholar 

  8. Wortmann F J and Schulz K V 1995 Polymer 36 2363

    Article  CAS  Google Scholar 

  9. Jacobs M J N and Dingenen J L J V 2001 J. Mater. Sci. 36 3137

    Article  CAS  Google Scholar 

  10. Rao M P, Duan Y, Keefe M, Powers B M and Bogetti T A 2009 Compos. Struct. 89 556

    Article  Google Scholar 

  11. Duan Y, Keefe M, Bogetti T A and Cheeseman B A 2005 Int. J. Impact. Eng. 31 996

    Article  Google Scholar 

  12. Duan Y, Keefe M, Bogetti T A and Powers B 2006 Int. J. Mech. Sci. 48 33

    Article  Google Scholar 

  13. Gu B 2004 J. Compos. Mater. 38 2049

    Article  Google Scholar 

  14. Ha-Minh C, Kanit T, Boussu F and Imad A 2011 J. Comput. Mater. Sci. 50 2172

    Article  CAS  Google Scholar 

  15. Li T T, Wang R, Lou C W and Lin J H 2014 Composites, Part B 59 60

    Article  CAS  Google Scholar 

  16. Singh T J and Samanta S 2015 Mater. Today Proc. 2 1381

    Article  Google Scholar 

  17. Bandaru A K, Chavan V V, Ahmad S, Alagirusamy R and Bhatnagar N 2016 Int. J. Impact Eng. 93 136

    Article  Google Scholar 

  18. Aamir M and Yu M 2015 Int. J. Sci. Res. Publ. 5 2250

    Google Scholar 

  19. Woo S C and Kim T W 2014 Composites, Part B 60 125

    Article  CAS  Google Scholar 

  20. Wortmann F J and Schulz K V 1995 J. Poly. 36 2363

    Article  CAS  Google Scholar 

  21. Pregoretti A, Traina M and Bunsell A R (eds) 2009 Handbook of tensile properties of textile and technical fibers (Cambridge: Woodhead Publishing Limited) p 354

  22. Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

    Article  Google Scholar 

  23. Solar M et al 2002 J. Phys.: Condens. Matter 14 2745

    Google Scholar 

  24. Perdew J P and Burke K 1996 J. Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  25. Trouillier N and Martins J L 1991 J. Phys. Rev. B 43 1993

    Article  Google Scholar 

  26. Junquera J, Paz O, Portal D S and Artacho E 2001 J. Phys. Rev. B 64 235111

    Article  Google Scholar 

  27. Shen C, Wang J, Tang Z, Wang H, Lian H, Zhang J et al 2009 Electrochim. Acta 54 3490

    Article  CAS  Google Scholar 

  28. Cisnerosa J A B, Ochoaa A T, Estradab J A G, Ramírezc C A H, Macíasa A H, Sáncheza R M et al 2012 J. Alloys Compd. 536S S456

  29. Verma M L, Rao B K, Singh R, Banchor D and Sahu H D 2017 J. Ionics 23 2715

    Article  CAS  Google Scholar 

  30. Matar S F, Pottgen R, Alam A F A and Ouaini N 2012 Chem. Phys. Lett. 5 75

    Google Scholar 

  31. Hughbanks T and Hoffmann R 1983 J. Am. Chem. Soc. 11 3528

    Article  Google Scholar 

  32. Lin L Y, Ying Z, Jie H R and Hong L G 2009 Chim. Phys. B 5 1923

    Article  Google Scholar 

  33. Bresciani L M, Manes A, Ruggiero A, Iannitti G and Giglio M 2016 Composites, Part B 88 114

    Article  CAS  Google Scholar 

  34. Ahmed D, Hongpeng Z, Haijuan K, Jing L, Yua M and Muhuo Y 2014 Mater. Res. 17 1180

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the management of Shri Shankaracharya Technical Campus-SSGI for the computing facility in the research laboratory. The first and third authors acknowledge the kind support of the Department of Mechanical Engineering, BIT, Durg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Keshav Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, H., Rao, B.K., Verma, M.L. et al. First principles study of breaking energy and mechanical strength of Kevlar-29. Bull Mater Sci 42, 76 (2019). https://doi.org/10.1007/s12034-019-1747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1747-y

Keywords

Navigation