Advertisement

Effect of functionalization and concentration of carbon nanotubes on mechanical, wear and fatigue behaviours of polyoxymethylene/carbon nanotube nanocomposites

  • Bhanu K Goriparthi
  • P N E Naveen
  • H Ravi Sankar
  • Somnath GhoshEmail author
Article
  • 30 Downloads

Abstract

The main focus of this work is to improve the mechanical, wear and fatigue behaviours of polyoxymethylene (POM) by reinforcing with carbon nanotubes (CNTs). To improve compatibility between CNTs and POM, the surface of the CNTs was modified by various methods of functionalization like carboxylation, silanation, carbonylation and amination. The functionalized CNTs were characterized by Fourier transform infrared spectroscopy to confirm the different functional groups attached to the surface. POM/CNT nanocomposites were developed with functionalized CNTs in different concentrations varying from 0.25 to 2 wt%. Nanocomposites with 1 wt% of silanated CNTs resulted in maximum improvement of tensile, flexural and impact properties. Furthermore, experimental results on fatigue and dry sliding wear tests revealed that the fatigue strength, specific wear rate and friction coefficient are sensitive to functionalization and concentration of CNTs.

Keywords

Carbon nanotubes silanation carboxylation amination carbonylation wear fatigue 

Notes

Acknowledgements

We gratefully acknowledge the financial support of the Department of Science and Technology, Government of India, for this work.

References

  1. 1.
    Imrek H 2009 Tribol. Int. 42 503CrossRefGoogle Scholar
  2. 2.
    Duzcukoglu H 2009 Tribol. Int. 42 1146CrossRefGoogle Scholar
  3. 3.
    Ijima S 1991 Nature 354 56CrossRefGoogle Scholar
  4. 4.
    Dresselhaus M S, Dresselhaus G and Saito R 1995 Carbon 33 883CrossRefGoogle Scholar
  5. 5.
    Fiedeler B and Gojny F H 2006 Compos. Sci. Technol. 66 3115CrossRefGoogle Scholar
  6. 6.
    Ma P-C, Siddique N A, Marom G and Kim J K 2010 Composites, Part A 41 1345CrossRefGoogle Scholar
  7. 7.
    Yousef S, Visco A M, Galtieri G and Njuguna J 2016 J. Miner. Metals Mater. Soc. 68 288CrossRefGoogle Scholar
  8. 8.
    Zeng Y, Ying Z, Du J and Cheng H M 2007 J. Phys. Chem. C 111 13945CrossRefGoogle Scholar
  9. 9.
    Zhao X and Ye L 2010 J. Polym. Sci. B: Polym. Phys. 48 905.  https://doi.org/10.1002/polb.21977 CrossRefGoogle Scholar
  10. 10.
    Wang F, Wu J K, Xia H S and Wang Q 2007 Plast. Rubber Compos. 36 297CrossRefGoogle Scholar
  11. 11.
    Jiang Z, Chen Y and Liu Z 2014 J. Polym. Res. 21 451CrossRefGoogle Scholar
  12. 12.
    Kwon J Y and Kim H D 2005 J. Appl. Polym. Sci. 96 595CrossRefGoogle Scholar
  13. 13.
    Hong S-K, Kim D, Lee S, Kim B W, Theilmann P and Park S H 2015 Composites, Part A 77 142CrossRefGoogle Scholar
  14. 14.
    Zhao C, Hu G, Justice R, Schaefer D W, Zhang S, Yang M et al 2005 Polymer 46 5125CrossRefGoogle Scholar
  15. 15.
    Kim M-G, Moon J-B and Kim C-G 2012 Composites, Part A 43 1620CrossRefGoogle Scholar
  16. 16.
    Ma P C, Kim J-K and Tang B Z 2007 Compos. Sci. Technol. 67 2965CrossRefGoogle Scholar
  17. 17.
    Liu T, Tong Y and Zhang W-D 2007 Compos. Sci. Technol. 67 406CrossRefGoogle Scholar
  18. 18.
    Meng H, Sui G X, Fang P F and Yang R 2008 Polymer 49 610CrossRefGoogle Scholar
  19. 19.
    Yuen S-M, Ma Chen-Cchi M, Lin Yao Y and Kuan H-C 2007 Compos. Sci. Technol. 67 2564CrossRefGoogle Scholar
  20. 20.
    Cui L-J, Geng H-Z, Wang W-Y, Chen L-T and Gao J 2013 Carbon 54 277CrossRefGoogle Scholar
  21. 21.
    Sulong A B, Park J, Lee N and Goak J 2006 J. Compos. Mater. 40 1947CrossRefGoogle Scholar
  22. 22.
    Lee J-H, Kathi J, Rhee K Y and Lee J H 2010 Polym. Eng. Sci. 50 1433CrossRefGoogle Scholar
  23. 23.
    Zhang W, Picu R C and Koratkar N 2008 Nanotechnology 19 285709CrossRefGoogle Scholar
  24. 24.
    Kuznetsova A, Mawhinney D B, Naumenko V, Yates J T, Liu J and Smalley R E 2000 Chem. Phys. Lett. 321 292CrossRefGoogle Scholar
  25. 25.
    Satyanarayana N, Xie X and Rambabu B 2000 Mater. Sci. Eng. B 72 7CrossRefGoogle Scholar
  26. 26.
    Lee J-H, Rhee K Y and Park S J 2011 Composites, Part A 42 478CrossRefGoogle Scholar
  27. 27.
    Lazzeri A and Phuong V U 2014 Compos. Sci. Technol. 93 106CrossRefGoogle Scholar
  28. 28.
    Zare Y 2015 Mech. Mater. 85 1CrossRefGoogle Scholar
  29. 29.
    Saha S and Bal S 2017 Bull. Mater. Sci. 40 945CrossRefGoogle Scholar
  30. 30.
    Saminathan K, Selvakumar P and Bhatnagar N 2008 Polym. Test. 27 453CrossRefGoogle Scholar
  31. 31.
    Ghoshal S, Wang P H, Gulgunje P, Verghese N and Kumar S 2016 Polymer 100 259CrossRefGoogle Scholar
  32. 32.
    Chandrasekaran S, Sato N, Tolle F, Mülhaupt R, Fiedler B and Schulte K 2014 Compos. Sci. Technol. 97 90CrossRefGoogle Scholar
  33. 33.
    Wang P H, Sarkar S, Gulgunje P, Verghese N and Kumar S 2018 Polymer 151 287CrossRefGoogle Scholar
  34. 34.
    Yuen S M, Ma C C M, Lin Y Y and Kuan H C 2007 Compos. Sci. Technol. 67 2564CrossRefGoogle Scholar
  35. 35.
    Geng Y, Liu M Y, Li J, Shi X M and Kim J K 2008 Composites, Part A 39 1876CrossRefGoogle Scholar
  36. 36.
    Mashhadzadeha A H, Fereidoona A B and Ahangari M G 2017 Appl. Surf. Sci. 420 167CrossRefGoogle Scholar
  37. 37.
    Yang B X, Pramoda K P, Xu G Q and Goh S H 2007 Adv. Funct. Mater. 17 2062CrossRefGoogle Scholar
  38. 38.
    Chang B-P, Md Akil H, Md. Nasir R B 2013 Wear 297 1120CrossRefGoogle Scholar
  39. 39.
    Chand N and Dwivedi U K 2006 Wear 261 1057CrossRefGoogle Scholar
  40. 40.
    Hwang W and Han K S 1986 J. Comp. Mater. 20 154CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIIIT RK Valley, RGUKT-APRK ValleyIndia
  2. 2.Department of Mechanical EngineeringGodavari Institute of Engineering and TechnologyRajahmundryIndia
  3. 3.Department of Mechanical Engineering, Central Research Laboratory (CRL)GITAM UniversityVisakhapatnamIndia
  4. 4.Faculty of Chemistry, Indian Institute of Petroleum and Energy (IIPE)VisakhapatnamIndia

Personalised recommendations