Skip to main content
Log in

Injectable nanocurcumin-dispersed gelatin–pluronic nanocomposite hydrogel platform for burn wound treatment

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

To utilize the potent pharmaceutical properties of curcumin (Cur) and gelatin-based materials in tissue regeneration, we fabricated a thermosensitive nanocomposite hydrogel based on pluronic-grafted gelatin (PG) and nanocurcumin (nCur) to enhance burn healing. In this method, the amphiphilic PG played a role as a surfactant to prepare and protect nanosized Cur particles, which could overcome the poor dissolution of the phytochemical. The synthesized PG was identified by \(^{1}\hbox {H}\) nuclear magnetic resonance. Depending on the amount of Cur, size distribution of the dispersed nCur ranged from 1.5 ± 0.5 to 16 ± 3.2 nm as observed using transmission electron microscopy and dynamic light scattering. The nCur-dispersed PG solution formed nCur–PG nanocomposite hydrogel on warming up to \(35{^{\circ }}\hbox {C}\). Release profile indicated sustainable release of Cur from the injectable platform. Fibroblast cells were well proliferated on the nanocomposite hydrogel. The nCur–PG enhanced the healing process of second-degree burn wound. These results showed potential applications of the biomaterial in tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thangapazham R L, Sharad S and Maheshwari R K 2016 Adv. Wound Care textbf5 230

    Article  Google Scholar 

  2. Tran N Q, Joung Y K, Lih E and Park K D 2011 Biomacromolecules 12 2872

    Article  CAS  Google Scholar 

  3. Aggarwal B B and Harikumar K B 2009 Int. J. Biochem. Cell Biol. 41 40

    Article  CAS  Google Scholar 

  4. Anand P, Kunnumakkara A B, Newmanand R A, Aggarwal B B 2007 Mol. Pharm. 4 807

    Article  CAS  Google Scholar 

  5. Cheppudira B, Fowler M, McGhee L, Greer A, Mares A, Petz L et al 2013 Expert Opin. Invest. Drugs 22 1295

    Article  CAS  Google Scholar 

  6. Emiroglu G, Coskun Z O, Kalkan Y, Erdivanli O C, Tumkaya L, Terzi S et al 2017 J. Evid. Based Complementary Altern. Med. 2017 ID 9452392

  7. Sharma R A, Steward W P and Gescher A J 2007 Adv. Exp. Med. Biol. 595 453

    Article  Google Scholar 

  8. Yuvarani I, Kumar S S, Venkatesan J, Kim S K and Sudha P N 2012 J. Biomater. Tissue Eng. 2 54

    Article  CAS  Google Scholar 

  9. Gong C Y, Wu Q J, Wang Y J, Zhang D D, Luo F, Zhao X, Wei Y Q and Qian Z Y 2013 Biomaterials 34 6377

    Article  CAS  Google Scholar 

  10. Sharma M, Sahu K, Singh S P and Jain B 2018 Artif. Cells Nanomed. Biotechnol. 28 1009

    Article  Google Scholar 

  11. Akbik D, Ghadiri M, Chrzanowski W and Rohanizadeh R 2014 Life Sci. 116 1

    Article  Google Scholar 

  12. Merrell J G, McLaughlin S W, Tie L, Laurencin C T, Chen A F and Nair L S 2009 Clin. Exp. Pharmacol. Physiol. 36 1149

    Article  CAS  Google Scholar 

  13. Carvalho D M, Takeuchi K P and Geraldine R M and Moura C J 2015 Food Sci. Technol. 35 115

    Article  Google Scholar 

  14. Lin C C, Lin H Y, Chen H C, Yu M W and Lee M H 2009 Food Chem. 116 923

    Article  CAS  Google Scholar 

  15. Kakkar V, Singh S, Singla D and Kaur I P 2011 Mol. Nutr. Food Res. 55 495

    Article  CAS  Google Scholar 

  16. Le P N, Huynh C K and Tran N Q 2018 Mater. Sci. Eng. C 92 1016

    Article  CAS  Google Scholar 

  17. Tran N Q, Choi J H, Bae J W, Choi J W, Joung Y K and Park K D 2011 Macromol. Res. 19 180

    Article  Google Scholar 

  18. Bonacucina G, Cespi M, Mencarelli G, Giorgioni G and Palmieri G F 2011 Polymers 3 779

    Article  CAS  Google Scholar 

  19. Wang K and Han Z C 2017 J. Control. Release 268 212

    Article  CAS  Google Scholar 

  20. Tong N A N, Nguyen T P, Nguyen C K and Tran N Q 2016 J. Biomater. Sci. Polym. Ed. 27 709

    Article  CAS  Google Scholar 

  21. Nguyen T T C, Nguyen T H, Tran N Q and Nguyen C K 2017 Mater. Sci. Eng. C: Mater. Biol. Appl. 70 992

    Article  CAS  Google Scholar 

  22. Davidenko N, Schuster C F, Bax D V, Farndale R W, Hamaia S, Best S M and Cameron R E 2016 J. Mater. Sci. Mater. Med. 27 148

    Article  Google Scholar 

  23. Van T D, Tran N Q, Nguyen D H, Nguyen C K, Tran D L and Nguyen P T 2016 J. Electron. Mater. 45 2415

    Article  Google Scholar 

  24. Balakrishnan B, Mohanty M, Umashankar P R and Jayakrishnan A 2005 Biomaterials 26 6335

    Article  CAS  Google Scholar 

  25. Nguyen T B T, Dang L H, Nguyen T T T, Tran D L, Nguyen D H, Nguyen V T et al 2016 Green Process. Synth. 5 511

    CAS  Google Scholar 

  26. Higuchi A, Sugiyama K, Yoon B, Sakurai M, Hara M, Sumita M et al 2003 Biomaterials 24 3235

    Article  CAS  Google Scholar 

  27. Jia W J, Liu J G, Zhang Y D and Wang J W 2007 J. Drug Target. 15 140

    Article  CAS  Google Scholar 

  28. Southall N T, Dill K A and Haymet A D J 2002 J. Phys. Chem. B 106 521

    Article  CAS  Google Scholar 

  29. Feng S S 2004 Expert Rev. Med. Devices 1 115

    Article  CAS  Google Scholar 

  30. Yallapu M M, Jaggi M and Chauhan S C 2012 Drug Discov. Today 17 71

    Article  CAS  Google Scholar 

  31. Li W, Zhou J and Xu Y 2015 Biomed. Rep. 3 617

    Article  CAS  Google Scholar 

  32. Lee S M, Chiang S H, Wang H Y, Wu P S and Lin C C 2015 Biosci. Biotechnol. Biochem. 79 247

    Article  CAS  Google Scholar 

  33. Dang L H, Nguyen T H, Tran L B H, Doan N V and Tran N Q 2018 J. Healthc. Eng. 5754890 14

    Google Scholar 

  34. Kang J Y, Huang H and Zhu F Q 2009 Zhongguo Zhong Xi Yi Jie He Za Zhi 29 1100

    CAS  Google Scholar 

  35. Vatankhah E, Prabhakaran M P, Jin G, Mobarakeh L G and Ramakrishna S 2014 J. Biomater. Appl. 28 909

    Article  Google Scholar 

  36. Pandima Devi M, Sekar M, Chamundeswari M, Moorthy A, Krithiga G, Selva M N and Sastry T P 2012 Bull. Mater. Sci. 5 1157

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Tra Vinh University under grant number 1434/HD.DHTV-KHCN and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2017.60.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Quyen Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, L.H., Huynh, N.T., Pham, N.O. et al. Injectable nanocurcumin-dispersed gelatin–pluronic nanocomposite hydrogel platform for burn wound treatment. Bull Mater Sci 42, 71 (2019). https://doi.org/10.1007/s12034-019-1745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1745-0

Keywords

Navigation