Skip to main content
Log in

Comparative studies on spinal ferrite \(\hbox {MFe}_{2}\hbox {O}_{4}\) (M = Mg/Co) nanoparticles as potential adsorbents for Pb(II) ions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Ferrite nanoparticles (NPs) with composition \(\hbox {MFe}_{2}\hbox {O}_{4}\) (M = Mg/Co) were synthesized by a facile combustion method. NPs were characterized employing various physico-chemical techniques. X-ray diffraction patterns confirmed the phase purity, transmission electron micrographs indicated that NPs are spherical and average diameter of maximum fraction of NPs was in the range of 20–30 nm. Magnetic studies revealed that the saturation magnetization values for \(\hbox {MgFe}_{2}\hbox {O}_{4}\) and \(\hbox {CoFe}_{2}\hbox {O}_{4}\) NPs were 13.17 and 41.12 emu \(\hbox {g}^{-1}\), respectively. The Brunauer–Emmett–Teller surface area of \(\hbox {CoFe}_{2}\hbox {O}_{4}\) and \(\hbox {MgFe}_{2}\hbox {O}_{4}\) NPs was 22.98 and 34.39 \(\hbox {m}^{2}\) \(\hbox {g}^{-1}\), respectively. Synthesized ferrite NPs and activated charcoal were comparatively analysed as adsorbents for removal of Pb(II) ions. The factors influencing uptake behaviour of Pb(II) ions viz. adsorbent dose, pH, concentration, temperature and contact time were quantified. The adsorption data showed good correlation with Langmuir and Freundlich models as compared to Dubinin–Radushkevich model. The maximum adsorption capacity displayed a two-fold increase for NPs as compared to activated charcoal. The easy magnetic separation of ferrite NPs from the solution and their regeneration with 0.1 N NaOH for reuse without any loss make them potential adsorbents. The trend in ascending order for the elimination of Pb(II) ions from the solution was activated charcoal \(<\hbox {CoFe}_{2}\hbox {O}_{4}\) \(\hbox {NPs}< \hbox {MgFe}_{2}\hbox {O}_{4}\) NPs. The observed differences in the adsorption potential of NPs are explained on the basis of structural and magnetic properties and the surface area of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harrison R M and Laxen D P H 1980 Chem. Br. 16 316

    CAS  Google Scholar 

  2. Perk M V 2006 Soil and water contamination (London, UK: Taylor and Francis Group plc) p 125

    Book  Google Scholar 

  3. Zhu S, Hou H and Xue Y 2008 Appl. Clay Sci. 40 171

    Article  CAS  Google Scholar 

  4. Goel J, Kadirvelu K and Garg V K 2005 J. Hazard Mater. B 125 211

    Article  CAS  Google Scholar 

  5. Pehlivan E and Atlun T 2007 J. Hazard. Mater. 140 299

    Article  CAS  Google Scholar 

  6. Argun M E, Dursun S, Ozdemir C and Karatas M 2007 J. Hazard. Mater. 141 77

    Article  CAS  Google Scholar 

  7. Chen Q, Luo Z, Hills C, Xue G and Tyrer M 2009 Water. Res. 43 2605

    Article  CAS  Google Scholar 

  8. Bhatnagar A and Minocha A K 2006. Chem. Technol. 13 203

    CAS  Google Scholar 

  9. Seo S H, Sung B W, Kim G J, Chu K H, Um C Y, Yun S L et al 2010 Water Sci. Technol. 62 2115

    Article  CAS  Google Scholar 

  10. Khaleel A, Kapoor P N and Klabunde K J 1999 Nanostruct. Mater. 11 459

    Article  CAS  Google Scholar 

  11. Kaur M, Rana S and Tarsikka P S 2012 Ceram. Int. 38 4319

    Article  CAS  Google Scholar 

  12. Kaur M, Kaur N and Vibha 2016 in Ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation V Sharma (ed) (American Chem. Soc., Washington, DC) p 113

  13. Hou X, Feng J, Liu X, Ren Y, Fan Z, Wei T et al 2011 J. Colloid. Interface Sci. 362 477

    Article  CAS  Google Scholar 

  14. Kuai S, Zhang Z and Nan Z 2013 J. Hazard. Mater. 250 229

    Article  Google Scholar 

  15. Hu J, Lo I M C and Chen G 2007 Sep. Purif. Technol. 56 249

    Article  CAS  Google Scholar 

  16. Lagashetty A, Vijyanand H, Basavaraja S, Mallikarjuna N N and Venkataraman A 2010 Bull. Mater. Sci. 33 4

    Article  Google Scholar 

  17. Ren Y, Li N, Feng J, Luan T, Wen Q, Li Z et al 2012 J. Colloid. Interface Sci. 367 415

    Article  CAS  Google Scholar 

  18. Bakshayesh S and Dehghani H 2014 J. Iran. Chem. Soc. 11 769

    Article  Google Scholar 

  19. Reddy D H K and Lee S 2013 Ind. Eng. Chem. Res. 52 15789

    Article  CAS  Google Scholar 

  20. Culita D C, Simonescu C M, Patescu R E, Dragne M, Stanica N and Oprea O 2016 J. Solid State Chem. 238 311

    Article  CAS  Google Scholar 

  21. Culita D C, Simonescu C M, Dragne M, Stanica N, Munteanu C, Preda S et al 2015 Ceram. Int. 41 13553

    Article  CAS  Google Scholar 

  22. Fang B, Yan Y, Yang Y, Wang F, Chu Z, Sun X et al 2016 Water Sci. Technol. 73 1112

    CAS  Google Scholar 

  23. Kang D, Yu X, Ge M F and Song W 2015 Microporous Mesoporous Mater. 207 170

    Article  CAS  Google Scholar 

  24. Kaur M, Kaur N, Jeet K and Kaur P 2015 Ceram. Int. 411 3739

    Google Scholar 

  25. Kaur M, Singh M, Mukhopadhyay S S, Singh D and Gupta M 2015 J. Alloys Compd. 653 202

    Article  CAS  Google Scholar 

  26. Christian G D 2004 Analytical chemistry (New Jersey, USA: John Wiley and Sons Inc.)

  27. Lagashetty A and Venkataraman A 2004 Bull. Mater. Sci. 27 491

  28. Nabiyouni G, Fesharaki M J, Mozafari M and Amighian J 2010 Chin. Phys. Lett. 27 126401

    Article  Google Scholar 

  29. Klug H P and Alexander I 1962 X-ray diffraction procedure (New York: Wiley)

  30. ASTM Card No. 17-484

  31. Maensiri S, Sangmanee M and Wiengmoon A 2009 Nanoscale Res. Lett. 4 221

    Article  CAS  Google Scholar 

  32. Arulmurugan R, Jeyadevan B, Vaidyanathan G and Sendhilnathan S 2005 J. Magn. Magn. Mater. 288 470

    Article  CAS  Google Scholar 

  33. Kaur M, Jain P and Singh M 2015 Mater. Chem. Phys. 162 332

    Article  CAS  Google Scholar 

  34. Pang Y, Zeng G, Tang L, Zhang Y, Liu Y, Lei X et al 2011 Desalination 281 278

    Article  CAS  Google Scholar 

  35. Tang L, Yang G D, Zeng G M, Cai Y, Li S S, Zhou Y Y et al 2014 Chem. Eng. J. 254 302

    Article  CAS  Google Scholar 

  36. Kaur M and Kaur M 2018 Ceram. Int. 44 4158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmeet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Kaur, M., Kaur, M. et al. Comparative studies on spinal ferrite \(\hbox {MFe}_{2}\hbox {O}_{4}\) (M = Mg/Co) nanoparticles as potential adsorbents for Pb(II) ions. Bull Mater Sci 42, 77 (2019). https://doi.org/10.1007/s12034-019-1743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1743-2

Keywords

Navigation