Structural and electrical conductivity of CH:MC bio-poly-blend films: optimize the perfect composition of the blend system

Abstract

In this study, solid polymer blend films based on chitosan (CH) and methylcellulose (MC) were prepared in various compositions by the solution cast technique. The features of structure and complexation of the blend polymer films were studied using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The shift of FTIR peaks of the amino groups of CH and the hydroxyl groups of MC reveals the formation of interchain hydrogen-bonding between CH and MC chains in blend films. From the XRD pattern, the semi-crystalline structure of CH was depressed with the addition of MC and shows the CH:MC blend system with ratio 75:25 has the minimum degree of crystallinity. The highest room temperature conductivity was found to be \(0.05\times 10^{-6}\, \hbox {S}\,\hbox {cm}^{-1}\) for 75CH:25MC blend polymer composition. The dc conductivity exhibits Arrhenius-type behaviour with temperature. The drastic increase in conductivity up to \(37.92\times 10^{-6}\, \hbox {S}\, \hbox {cm}^{-1}\) at 373 K, can be explained by free volume model. The highest value of electrical conductivity for all prepared samples was associated with the minimum value of activation energy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Muchakayala R, Song S, Gao S, Wang X and Fan Y 2017 Polym. Test. 58 116

    CAS  Article  Google Scholar 

  2. 2.

    Kulshrestha N and Gupta P N 2016 Ionics 22 671

    CAS  Article  Google Scholar 

  3. 3.

    Khiar A S A and Arof A K 2010 Ionics 16 123

    CAS  Article  Google Scholar 

  4. 4.

    Aziz S B, Abdullah O G and Hussein S A 2018 J. Electron. Mater. 47 3800

    CAS  Article  Google Scholar 

  5. 5.

    Aziz S B, Abdullah O G, Saber D R, Rasheed M A and Ahmed H M 2017 Int. J. Electrochem. Sci. 12 363

    CAS  Article  Google Scholar 

  6. 6.

    Abdullah O G 2016 J. Mater. Sci. Mater. Electron. 27 12106

    CAS  Article  Google Scholar 

  7. 7.

    Abdulwahid R T, Abdullah O G, Aziz S B, Hussein S A, Muhammad F F and Yahya M Y 2016 J. Mater. Sci. Mater. Electron. 27 12112

    CAS  Article  Google Scholar 

  8. 8.

    Abdullah O G, Aziz S B and Rasheed M A 2017 J. Mater. Sci. Mater. Electron. 28 4513

    CAS  Article  Google Scholar 

  9. 9.

    Aziz S B, Abdullah O G and Rasheed M A 2017 J. Appl. Polym. Sci. 134 44847

    Google Scholar 

  10. 10.

    Abdullah O G, Aziz S B and Rasheed M A 2018 Ionics 24 777

    CAS  Article  Google Scholar 

  11. 11.

    Ramamohan K, Achari V B S, Sharma A K and Xiuyang L 2015 Ionics 21 1333

    CAS  Article  Google Scholar 

  12. 12.

    Kesavan K, Mathew C M, Rajendran S, Subbu C and Ulaganathan M 2015 Braz. J. Phys. 45 19

    CAS  Article  Google Scholar 

  13. 13.

    Reddeppa N, Reddy T J R, Achari V B S, Rao V V R N and Sharma A K 2009 Ionics 15 255

    CAS  Article  Google Scholar 

  14. 14.

    Lewandowska K 2009 Thermochim. Acta 493 42

    CAS  Article  Google Scholar 

  15. 15.

    Marsano E, Vicini S, Skopinska J, Wisniewski M and Sionkowska A 2004 Macromol. Symp. 218 251

    CAS  Google Scholar 

  16. 16.

    Liu P, Wei X and Liu Z 2013 Adv. Mater. Res. 750–752 802

    Article  Google Scholar 

  17. 17.

    Aziz N A N, Idris N K and Isa M I N 2010 Int. J. Polym. Anal. Charact. 15 319

    Article  Google Scholar 

  18. 18.

    Gomes A M M, Silva P L, Moura C L, Silva C E M and Ricardo N M P S 2011 . Macromol. Symp. 299/300 220

    Article  Google Scholar 

  19. 19.

    Basavaraju K C, Damappa T and Rai S K 2006 Carbohyd. Polym. 66 357

    CAS  Article  Google Scholar 

  20. 20.

    Synytsya A, Grafova M, Slepicka P, Gedeon O and Synytsya A 2012 Biomacromolecules 13 489

    CAS  Article  Google Scholar 

  21. 21.

    Hamdan K Z and Khiar A S A 2014 Key Eng. Mater. 594–595 818

    Google Scholar 

  22. 22.

    Misenan M S M, Ali E S and Khiar A S A 2018 AIP Conf. Proc. 1972 030010

    Article  Google Scholar 

  23. 23.

    Praveena S D, Ravindrachary V, Bhajantri R F and Ismayi 2014 Polym. Composit. 27 987

  24. 24.

    Silva S S, Goodfellow B J, Benesch J, Rocha J, Mano J F and Reis R L 2007 Carbohyd. Polym. 70 25

    CAS  Article  Google Scholar 

  25. 25.

    Rangelova N, Radev L, Nenkova S, Salvado I M M, Fernandes M H V and Herzog M 2011 Cent. Eur. J. Chem. 9 112

    CAS  Google Scholar 

  26. 26.

    Filho G R, Assuncao R M N, Vieira J G, Meireles C S, Cerqueira D A, Barud H S et al 2007 Polym. Degrad. Stabil. 92 205

    Article  Google Scholar 

  27. 27.

    Ragab H S and El-Kader M F H A 2013 Phys. Scr. 87 025602

    Article  Google Scholar 

  28. 28.

    Tang Y, Wang X, Li Y, Lei M, Du Y, Kennedy J F et al 2010 Carbohyd. Polym. 82 833

    CAS  Article  Google Scholar 

  29. 29.

    Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A and Nithya H 2009 J. Non-Cryst. Solids 355 84

    CAS  Article  Google Scholar 

  30. 30.

    Abdullah O G, Aziz S B and Rasheed M A 2016 Results Phys. 6 1103

    Article  Google Scholar 

  31. 31.

    Ragab H M 2011 Physica B 406 3759

    CAS  Article  Google Scholar 

  32. 32.

    Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H et al 2011 J. Non-Cryst. Solids 357 3751

    CAS  Article  Google Scholar 

  33. 33.

    Abdullah O G, Salman Y A K and Saleem S A 2016 J. Mater. Sci. Mater. Electron. 27 3591

    CAS  Article  Google Scholar 

  34. 34.

    Abdullah O G and Saleem S A 2016 J. Electron. Mater. 45 5910

    CAS  Article  Google Scholar 

  35. 35.

    Aziz S B, Abdulwahid R T, Rasheed M A, Abdullah O G and Ahmed H M 2017 Polymers 9 486

    Article  Google Scholar 

  36. 36.

    Aziz S B, Abdullah O G, Hussein S A and Ahmed H M 2017 Polymers 9 622

    Article  Google Scholar 

  37. 37.

    Wang J, Song S, Muchakayala R, Hu X and Liu R 2017 Ionics 23 1759

    CAS  Article  Google Scholar 

  38. 38.

    Aziz S B, Abdullah O G and Rasheed M A 2017 J. Mater. Sci. Mater. Electron. 28 12873

    CAS  Article  Google Scholar 

  39. 39.

    Bdewi S F, Abdullah O G, Aziz B K and Mutar A A R 2016 J. Inorg. Organomet. Polym. Mater. 26 326

    CAS  Article  Google Scholar 

  40. 40.

    Abdullah O G, Tahir D A and Kadir K 2015 J. Mater. Sci. Mater. Electron. 26 6939

    CAS  Article  Google Scholar 

  41. 41.

    Achari V B, Reddy T J R, Sharma A K and Rao V V R N 2007 Ionics 13 349

    CAS  Article  Google Scholar 

  42. 42.

    Abdullah O G, Aziz S B, Saber D R, Abdullah R M, Hanna R R and Saeed S R 2017 J. Mater. Sci. Mater. Electron. 28 8928

    CAS  Article  Google Scholar 

  43. 43.

    Wojdyr M 2010 J. Appl. Crystallogr. 43 1126

    CAS  Article  Google Scholar 

  44. 44.

    Sownthari K and Suthanthiraraj S A 2013 Express Polym. Lett. 7 495

    CAS  Article  Google Scholar 

  45. 45.

    Rani N S, Sannappa J, Demappa T and Mahadevaiah 2015 Ionics 21 133

  46. 46.

    El-Kader M F H and Ragab H S 2013 Ionics 19 361

    Article  Google Scholar 

  47. 47.

    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J and Hattori T 2006 Solid State Ion. 177 2679

    CAS  Article  Google Scholar 

  48. 48.

    Abazine K, Anakiou H, El Hasnaoui M, Graca M P F, Fonseca M A, Costa L C et al 2016 J. Compos. Mater. 50 3283

    CAS  Article  Google Scholar 

  49. 49.

    Ng L S and Mohamad A A 2008 J. Membrane Sci. 325 653

    CAS  Article  Google Scholar 

  50. 50.

    Shuhaimi N E A, Teo L P, Woo H J, Majid S R and Arof A K 2012 Polym. Bull. 69 807

    CAS  Article  Google Scholar 

  51. 51.

    Elashmawi I S, Elsayed N H and Altalhi F A 2014 J. Alloy. Compd. 617 877

    CAS  Article  Google Scholar 

  52. 52.

    Dam T, Karan N K, Thomas R, Pradhan D K and Katiyar R S 2015 Ionics 21 401

    CAS  Article  Google Scholar 

  53. 53.

    Aziz S B, Rasheed M A, Saeed S R and Abdullah O G 2017 Int. J. Electrochem. Sci. 12 3263

    CAS  Article  Google Scholar 

  54. 54.

    Hebbar V, Bhajantri R F and Naik J 2017 J. Mater. Sci. Mater. Electron. 28 5827

    CAS  Article  Google Scholar 

  55. 55.

    Shukur M F, Ithnin R, Illias H A and Kadir M F Z 2013 Opt. Mater. 35 1834

    CAS  Article  Google Scholar 

  56. 56.

    Mohan V M, Raja V, Bhargav P B, Sharma A K and Rao V V R N 2007 J. Polym. Res. 14 283

    CAS  Article  Google Scholar 

  57. 57.

    Badr S, Sheha E, Bayomi R M and El-Shaarawy M G 2010 Ionics 16 269

    CAS  Article  Google Scholar 

  58. 58.

    Raja V, Mohan V M, Sharma A K and Rao V V R N 2009 Ionics 15 519

    CAS  Article  Google Scholar 

  59. 59.

    Sugumaran S and Bellan C S 2014 Optik 125 5128

    CAS  Article  Google Scholar 

  60. 60.

    Ravi M, Bhavani S, Kumar K K and Rao V V R N 2013 Solid State Sci. 19 85

    CAS  Article  Google Scholar 

  61. 61.

    Yusof Y M, Shukur M F, Illias H A and Kadir M F Z 2014 Phys. Scr. 89 035701

    Article  Google Scholar 

  62. 62.

    Hafiza M N, Bashirah A N A, Bakar N Y and Isa M I N 2014 Int. J. Polym. Anal. Charact. 19 151

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education and Scientific Research, University of Sulaimani, and Komar University of Science and Technology, for the financial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omed G H Abdullah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G.H., Hanna, R.R. & Salman, Y.A.K. Structural and electrical conductivity of CH:MC bio-poly-blend films: optimize the perfect composition of the blend system. Bull Mater Sci 42, 64 (2019). https://doi.org/10.1007/s12034-019-1742-3

Download citation

Keywords

  • Polymer blend films
  • degree of crystallinity
  • electrical conductivity
  • activation energy