Skip to main content
Log in

Synthesis and characterization of Ni–\(\hbox {Si}_{3}\hbox {N}_{4}\) nanocomposite coatings fabricated by pulse electrodeposition

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Pure Ni and Ni–silicon nitride \((\hbox {Si}_{3}\hbox {N}_{4})\) nanocomposite coatings have been successfully fabricated on copper substrates by a pulse electrodeposition method employing the Watts bath. The obtained coatings were characterized with X-ray diffractometry and scanning electron microscopy. Also, surface hardness and the corrosion behaviour of the coatings were analysed by potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. It was found that incorporation of \(\hbox {Si}_{3}\hbox {N}_{4}\) particulates has reduced the crystallite size and also changed the growth orientation of the crystallite from (111) to (220) and (200) crystal planes. The co-deposition of \(\hbox {Si}_{3}\hbox {N}_{4}\) in the Ni matrix led to better properties of these coatings. Accordingly, the hardness value of nanocomposite coatings was about 80–140 Hv higher than that of pure nickel due to dispersion-strengthening and matrix grain refining and increased with the enhancement of incorporating \(\hbox {Si}_{3}\hbox {N}_{4}\) particle content. The presence of the \(\hbox {Si}_{3}\hbox {N}_{4}\) particulates slightly decreases the current efficiency. The current efficiency was decreased by increasing current density from 1 to 4 A \(\hbox {dm}^{-2}\). Moreover, the corrosion resistance of nanocomposite coatings was significantly higher than the pure Ni deposit. Also, the Ni–\(\hbox {Si}_{3}\hbox {N}_{4}\) coating produced at a density of 4 A \(\hbox {dm}^{-2}\) showed the lowest corrosion rate (0.05 mpy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hou K H, Sheu H H and Ger M D 2014 Appl. Surf. Sci. 308 372

    Article  CAS  Google Scholar 

  2. Aruna S T and Srinivas G 2015 Surf. Eng. 31 708

    Article  CAS  Google Scholar 

  3. Bajwa R S, Khan Z, Bakolas V and Braun W 2016 Acta Metall. Sin. 29 8

    Article  CAS  Google Scholar 

  4. Agarwala R C and Agarwala V 2003 Sadhana 28 475

    Article  CAS  Google Scholar 

  5. Eslami M, Saghafian H and Golestani-fard F 2014 Appl. Surf. Sci. 300 129

    Article  CAS  Google Scholar 

  6. Bakhit B, Akbari A, Nasirpouri F and Hosseini M G 2014 Appl. Surf. Sci. 307 351

    Article  CAS  Google Scholar 

  7. Gheorghies C, Carac G and Stasi I V 2006 J. Optoelectron. Adv. Mater8 1234

    CAS  Google Scholar 

  8. Chen X H, Chen C S, Xiao H N, Cheng F Q, Zhang G and Yi G J 2005 Surf. Coat. Technol. 191 351

    Article  CAS  Google Scholar 

  9. Kang J X, Zhao W Z and Zhang G F 2009 Surf. Coat. Technol. 203 1815

    Article  CAS  Google Scholar 

  10. Reddy R M, Praveen B M, Chandrappa K G and Nayana K O 2016 Surf. Eng. 32 501

    Article  CAS  Google Scholar 

  11. Lajevardi S A and Shahrabi T 2010 Appl. Surf. Sci. 256 6775

    Article  CAS  Google Scholar 

  12. Zoikis-Karathanasis A, Pavlatou E A and Spyrellis N 2010 J. Alloy Compd. 494 396

    Article  CAS  Google Scholar 

  13. Asnavandi M, Ghorbani M and Kahram M 2013 Surf. Coat. Technol. 216 207

    Article  CAS  Google Scholar 

  14. Lekka M, Zendron G, Zanella C, Lanzutti A, Fedrizzi L and Bonora P L 2011 Surf. Coat. Technol. 205 3438

    Article  CAS  Google Scholar 

  15. Ramalingam S, Muralidharan V S and Subramania A 2009 J. Solid State Electrochem. 13 1777

    Article  CAS  Google Scholar 

  16. Srivastava M, Grips V W and Rajam K S 2008 Mater. Lett. 62 3487

    Article  CAS  Google Scholar 

  17. Li Q, Yang X, Zhang L, Wang J and Chen B 2009 J. Alloy Compd482 339

    Article  CAS  Google Scholar 

  18. Reddy R M, Praveen B M, Kumar C P and Venkatesha T V 2017 Surf. Eng. Appl. Electrochem. 53 258

    Article  Google Scholar 

  19. Kasturibai S and Kalaignan G P 2014 Bull. Mater. Sci. 37 721

    Article  CAS  Google Scholar 

  20. Arghavanian R and Parvini-Ahmadi N 2011 J. Solid State Electrochem. 15 2199

    Article  CAS  Google Scholar 

  21. Zhu J, Liu L, Hu G, Shen B, Hu W and Ding W 2004 Mater. Lett. 58 1634

    Article  CAS  Google Scholar 

  22. Shi L, Sun C, Gao P, Zhou F and Liu W 2006 Appl. Surf. Sci. 252 3591

    Article  CAS  Google Scholar 

  23. Shewmon P ed. 2016 Diffusion in solids (Berlin: Springer)

    Google Scholar 

  24. Chen L, Wang L, Zeng Z and Xu T 2006 Surf. Coat. Technol. 201 599

    Article  CAS  Google Scholar 

  25. Pathak S et al 2011 Surf. Coat. Technol. 205 3651

    Article  CAS  Google Scholar 

  26. Godon A et al 2011 Mater. Charact. 62 164

    Article  CAS  Google Scholar 

  27. Guglielmi N 1972 J. Electrochem. Soc. 119 1009

    Article  CAS  Google Scholar 

  28. Gül H, Kılıç F, Uysal M, Aslan S, Alp A and Akbulut H 2012 Appl. Surf. Sci. 258 4260

    Article  Google Scholar 

  29. Sajjadnejad M, Omidvar H, Javanbakht M and Mozafari A 2017 J. Alloy Compd. 704 809

    Article  CAS  Google Scholar 

  30. Solmaz R, Altunbaş E and Kardaş G 2011 Mater. Chem. Phys. 125 796

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Noori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, S.M. Synthesis and characterization of Ni–\(\hbox {Si}_{3}\hbox {N}_{4}\) nanocomposite coatings fabricated by pulse electrodeposition. Bull Mater Sci 42, 44 (2019). https://doi.org/10.1007/s12034-019-1733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1733-4

Keywords

Navigation