Development of an acetanilide/benzoic acid eutectic phase change material based thermal energy storage unit for a passive water heating system


In the present work, two organic phase change materials (PCMs) are used to develop a new eutectic PCM for sharp melting point with high latent heat of fusion. Optimized eutectic can be suitable for a passive water heating system (PWHS). The binary eutectic PCMs consisting of different compositions of acetanilide and benzoic acid are prepared and optimized at a composition of 30:70 by weight percentage. Optimized samples are characterized by using differential scanning calorimetry (DSC), Fourier transform infrared spectrophotometry and field-emission scanning electron microscopy. The results of DSC showed that melting temperature and latent heat of the optimized eutectic PCM is found to be \(75.56{^{\circ }}\hbox {C}\) and \(193.56\,\hbox {J}\,\hbox {g}^{-1}\). A negligible change in melting temperature and latent heat of fusion of the optimized eutectic based PCM after 100 accelerated heating and cooling cycles is observed. The prepared eutectic PCM is employed as a thermal energy storage (TES) system for PWHS. The experimental results of a eutectic PCM based TES system for the PWHS show that the use of eutectic helps in enhancing the maximum utility of solar energy during off-shine hours.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Swapna L C, Deepika B, Bhaskaran P, Nair S V and Subramanian K R V 2014 Bull. Mater. Sci. 37 685

    Article  Google Scholar 

  2. 2.

    Sarı A, Biçer A, Karaipekli A, Alkan C and Karadag A 2010 Sol. Energy Mater. Sol. Cells 94 1711

    Article  Google Scholar 

  3. 3.

    Raoux S and Wuttig (eds) 2009 Phase change materials (NY: Springer)

    Google Scholar 

  4. 4.

    Farid M M, Khudhair A M, Razack S A K and Al-Hallaj S 2004 Energy Convers. Manage. 45 1597

    CAS  Article  Google Scholar 

  5. 5.

    Tyagi V V and Buddhi D 2007 Renew. Sust. Energy Rev. 11 1146

    Article  Google Scholar 

  6. 6.

    Kuznik F, David D, Johannes K and Roux J J 2011 Renew. Sust. Energy Rev. 15 379

    CAS  Article  Google Scholar 

  7. 7.

    Sharma A, Tyagi V V, Chen C R and Buddhi D 2009 Renew. Sust. Energy Rev. 13 318

    CAS  Article  Google Scholar 

  8. 8.

    Fan L W and Khodadadi J M 2011 Renew. Sust. Energy Rev. 15 24

    CAS  Article  Google Scholar 

  9. 9.

    Murat K and Khamid M 2007 Renew. Sust. Energy Rev. 11 1913

    Article  Google Scholar 

  10. 10.

    Pielichowska K and Pielichowski K 2014 Prog. Mater. Sci. 65 67

    CAS  Article  Google Scholar 

  11. 11.

    Sari A and Kaygusuz K 2002 Sol. Energy 72 493

    CAS  Article  Google Scholar 

  12. 12.

    Sari A and Karaipekli A 2009 Sol. Energy Mater. Sol. Cells 93 571

    CAS  Article  Google Scholar 

  13. 13.

    Shilei L, Neng Z and Feng G H 2006 Energy Build. 38 708

    Article  Google Scholar 

  14. 14.

    Wang Y, Xia T D, Feng H X and Zhang H 2011 Renew. Energy 36 1814

    CAS  Article  Google Scholar 

  15. 15.

    Shukla A, Buddhi D and Sawhney R 2008 Renew. Energy 33 2606

    CAS  Article  Google Scholar 

  16. 16.

    Zuo J G, Li W Z and Weng L D 2011 Appl. Therm. Eng. 31 1352

    CAS  Article  Google Scholar 

  17. 17.

    Zeng J L, Cao Z, Yang D W, Xu F, Sun L X, Zhang L et al 2009 J. Therm. Anal. Calorim. 95 501

    CAS  Article  Google Scholar 

  18. 18.

    Jebasingh B E 2016 J. Energy Storage 5 70

    Article  Google Scholar 

  19. 19.

    Fauzi H, Metselaar H S C, Mahila T M I, Silakhori M and Nur H 2013 Appl. Therm. Eng. 60 261

    CAS  Article  Google Scholar 

  20. 20.

    Bansal N K and Buddhi D 1992 Sol. Energy 33 235

    CAS  Google Scholar 

  21. 21.

    Tayeb A M 1993 Energy Convers. Manage. 34 243

    CAS  Article  Google Scholar 

  22. 22.

    Patel J H, Qureshi M N and Darji P H 2018 Materials Today: Proc. 5 1490

    CAS  Google Scholar 

  23. 23.

    Chaurasia P B L 2000 Proceedings of 8th International conference on thermal energy storage, Stuttgart, Germany

  24. 24.

    Bajnoczy G, Palffy E G, Szolnoki L and Prepostoffy E 2007 Period. Polytecinica Chem. Eng. 51 3

    CAS  Article  Google Scholar 

  25. 25.

    Kurklu A, Ozmerzi A and Bilgin S 2002 Renew. Energy 26 391

    CAS  Article  Google Scholar 

  26. 26.

    Baran G and Sari A 2003 Energy Convers. Manage. 44 3227

    CAS  Article  Google Scholar 

  27. 27.

    Sharma A, Pradhan N and Kumar B 2003 IEA ECESIA Annex 17 Advanced thermal energy storage through phase change materials and chemical reactions—feasibility studies and demonstration projects, 4th workshop, Indore, India, March 21 109

  28. 28.

    Mettawee E B S and Assassa G M R 2006 Energy 31 2958

    Article  Google Scholar 

  29. 29.

    Hassana M M and Beliveau Y 2008 Build. Environ. 43 804

    Article  Google Scholar 

  30. 30.

    Mazman M, Cabeza L F, Mehling H, Nogues M, Evliya H and Paksoy H O 2009 Renew. Energy 34 1639

    Article  Google Scholar 

  31. 31.

    Marka S K, Nagavolu C, Vadali V S S, Srikanth V, Kota B S R and Baldev R 2018 Bull. Mater. Sci. 41 62

    Article  Google Scholar 

  32. 32.

    Li X, Liu M, Lin D and Yongming J 2015 Proced. Eng. 121 1341

    Article  Google Scholar 

  33. 33.

    Tang X, Zhu B, Xu M, Zhang W, Yang Z, Zhang Y et al 2015 Energy Build. 109 353

    Article  Google Scholar 

  34. 34.

    Narayanan S S et al 2016 Resource-Efficient Tech.

  35. 35.

    Shahbaz K, Alnashef I M, Lin R J T, Hashim M A, Mjalli F S and Farid M M 2016 Sol. Energy Mater. Sol. Cells 155 147

    CAS  Article  Google Scholar 

  36. 36.

    Fauzi H, Metselaar H S C, Mahlia T M I and Silakhori M 2014 Appl. Therm. Eng. 66 328

    CAS  Article  Google Scholar 

  37. 37.

    Meenakshi Reddy R, Nallusamy N, Hariprasad T, Hemachandra Reddy K and Ramachandra Reddy G 2012 Int. J. Renew. Energ. Tech. 3 11

    Article  Google Scholar 

  38. 38.

    Jeong S G, Lee J H, Seo J and Kim S 2014 Int. J. Heat Mass Transfer 71 245

    CAS  Article  Google Scholar 

  39. 39.

    Jie H and Liu S 2017 RSC Adv. 7 22170

    Article  Google Scholar 

  40. 40.

    Yang H, Memon S A, Bao X, Cui H and Li D 2017 Materials. (Basel) 10 391

    Article  Google Scholar 

  41. 41.

    Cabeza L F, Castell A, Barreneche C, de Gracia A and Fernández A I 2011 Renew. Sust. Energy Rev. 15 1675

    CAS  Article  Google Scholar 

  42. 42.

    Zalba B, Marín J M, Cabeza L F and Mehling H 2003 Appl. Therm. Eng. 23 251

    CAS  Article  Google Scholar 

  43. 43.

  44. 44.

    Kim D, Jung J, Kim Y, Lee M, Seo J and Khan S B 2016 Int. J. Heat Mass Transfer 95 735

    CAS  Article  Google Scholar 

  45. 45.

    Sharma N K, Tiwari P K and Sood Y R 2012 Renew. Sust. Energy Rev. 16 933

    Article  Google Scholar 

  46. 46.

    Pincemin S, Olives R, Py X and Christ M 2008 Sol. Energy Mater. Sol. Cells 92 603

    CAS  Article  Google Scholar 

  47. 47.

    Das S, Murugadoss A, Sarkar S and Chattopadhyay A 2008 J. Chem. Sci. 6 547

    Article  Google Scholar 

  48. 48.

    Stepanian S G, Reva I D, Radchenko E D and Sheina G G 1996 J. Vib. Spectrosc. 11 123

    CAS  Article  Google Scholar 

Download references


The authors are greatly thankful to Suresh Silawat, Govt. Holkar Science College, Indore for providing the laboratory facilities. The authors are also thankful to Dharam Buddhi, S.G.V. University, Jaipur, V Ganeshan, Mukul Gupta, M Awasthi N P Lalla, Uday Deshpandey and S Bhardwaj UGC-DAE-Consortium, Kinney Pandey, IIT Indore for their support in characterization of the samples and useful discussions.

Author information



Corresponding author

Correspondence to Khushboo Purohit.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Purohit, K., Murty, V.V.S., Dixit, R.C. et al. Development of an acetanilide/benzoic acid eutectic phase change material based thermal energy storage unit for a passive water heating system. Bull Mater Sci 42, 119 (2019).

Download citation


  • Phase change material (PCM)
  • eutectic
  • differential scanning calorimetry (DSC)
  • thermal energy storage (TES)
  • passive water heating system (PWHS)